Application of Selective Reaction Monitoring (SRM) Proteomics to Quantify Reductive Dehalogenase Peptides (RDases) in Microbial Consortium SDC-9

K.H. Kucharzyk, J. Meisel, L. Mullins, M. Michelson, P. B. Hatzinger, F. E. Löffler, F. K. Murdoch, J. T. Wilson and J. Istock

April 2019 Bioremediation Symposium

MEETING DOD'S ENVIRONMENTAL CHALLENGES

Relationship Between 'Omics'

Conventional and Advanced MBTs

A variety of MBTs are available to assist in the following:

- Determine if remediation is working
- Select the appropriate remediation strategy
- Transition from active treatment to MNA
- Include additional lines of evidence

Application of correct MBT to use <u>must be carefully considered</u> taking into account the following objectives:

- What are your goals?
- What type of data will you need?
- Which phase is the site in?
- What is the geochemical data saying (spatial vs temporal)?
- What are your other lines of evidence telling you?

Understanding Biodegradation Rate Is Critical To Site Management

- Measuring biodegradation rates from field samples can be difficult due to:
 - Limited data (sample volume, frequency, replicates)
 - Challenging plume dynamics (insufficient delineation, lithologic heterogeneities, etc.)

• Proteomic Benefits:

 Proteomics can provide additional lines of evidence to further support site recommendations and decision making (e.g., reduction in sampling frequency and/or sampling location(s), elimination of required analytes, site closure, etc..)

DNA-based Molecular Biological Tools Do NOT Provide Quantitative Degradation Rate Information

TRANS-

CRIPTS

qPCR: gene abundance

GENES

 Metagenomics (sequence or array)

ORGANISMS

- Total microbial community composition
- Relative gene and/or organism abundance

PROTEINS

ACTIVITY

(RATE)

Proteomics Provides Information on Functional Activity

Discovery Proteomics & Peptide Detection

4. MS/MS Search & Bioinformatic Analysis

- Identify RDase hits from MS/MS search
- Select peptides specific to RDases
- Build SRM method

3. LC-MS/MS (Quadrupole Time of Flight, qTOF)

Targeted Proteomics & Peptide Detection

Peptides

RDase Identification and Down selection

sequences

Peptide

cleanup

 Identified at least 39 unique RDase peptides from the SDC-9 protein digests

Protein Extraction

Proteins

Isotopic peptide spike, Reduction, Alkylation Trypsin Digestion

Cellular lysis

Protein extraction

Triple Quadrupole Mass Spectrometry

Establish IDL and MDL for Selected Peptide Targets

Bioinformatic Analysis

Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

	Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
Transition 1	FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
	FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
	FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
	FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

	Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
Transition 1	FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
	FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
	FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
	FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

	Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
Transition 1	FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
	FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
	FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
	FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

	Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
Transition 1	FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
	FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
	FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
	FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

	Sequence	Q1 [m/z]	Q3 [m/z]	fragmentation	CE [eV]	Dwell Time [ms]
Transition 1	FFGFTPEGVAER	678.83	531.29	Y5	26.4	250
	FFGFTPEGVAER	678.83	757.38	Y7	26.4	250
	FFGFTPEGVAER	678.83	858.43	Y8	26.4	250
	FFGFTPEGVAER	678.83	1062.52	Y10	26.4	250

time point Sequence **Q1 Q**3 fragmentation CE **Dwell Time [ms]** Х [m/z] [m/z][eV] **FFGFTPEGVAER** 678.83 531.29 **Y5** 26.4 250 Transition 1 2676 757.38 Y7 26.4**FFGFTPEGVAER** 678.83 250 **FFGFTPEGVAER** 678.83 858.43 **Y8** 26.4250 FFGFTPEGVAER 678.83 1062.52 Y10 26.4 250

Principle of Data Acquisition SRM Method

Peptide Query Parameters for Targeted Proteomic Experiment

Target Proteins

Target Peptides

SRM Methods is a Balancing Act

Goal: Achieve the best sensitivity at a high quantitative accuracy with as many proteins as possible!

Microbial Dehalogenation of CVOCs

Dehalococcoides

Microbial Dehalogenation of CVOCs

Key genes in reductive dechlorination of of chlorinated ethenes; M = metabolic, C = cometabolic *Source: J.Barnes (conference talk)*

Michalsen, M.M., Kucharzyk, K.H., Meisel, J.E., Hatzinger, P., Loffler, F., Wilson, J., Istok, J. Validation of Advanced Molecular Biological Tools for Monitoring Chlorinated Solvent Bioremediation and Estimating Degradation Rates. Eleventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Palm Springs, California; April 8-12, 2018).

Microbial Dehalogenation of CVOCs

*metagenomic guided proteomics reduces probability of misalignment of peptides or using incorrectly annotated sequences from NCBI

Metagenomics and Shotgun Proteomics

RDase #	RDase Identifier	Host	Accession # of closest RDase in Database	Query Coverage	% Amino Acid Identity	Predicted function
1	6337_195	DHC	WP_058292018.1	96%	99%	?
2	6337_194	DHC	KSV18849.1	99%	100%	?
3	352_158	DHC	KSV18948.1	98%	100%	?
4	6337_252	DHC	WP_010935983.1	99%	100%	?
5	352_212	DHC	AEI59454.1	99%	99%	VcrA
6	178_59	DHC	WP_062900263.1	99%	99%	TceA
7	6337_160	DHC	KSV18948.1	98%	100%	?
8	2271_52	DHC	WP_010935983.1	99%	100%	?
9	352_192	DHC	KSV18849.1	99%	100%	?
10	352_193	DHC	WP_058292018.1	96%	99%	?
11	3176_24	Dsf	CAD28790.2	99%	94%	PceA
12	133_66	Dsf	WP_015043198.1	98%	40%	?
13	3175_18	Dsf	CDX01551.1	99%	100%	?
14	3176_29	Dsf	WP_025206074.1	99%	82%	PceA

32 unique RDase peptides identified, 14 down-selected Targets verified by spiking isotopically labeled peptides

Protein and Peptide Targets

Protein	Peptide ID	Peptide Sequence
EdhA	FdhA 2	SGSEIAFTGGLIK
FUIA	FdhA 5	ALGIVYLDSQAR
	PceA4	IATQIPLLQDAAR
Bee A	PceA5	LESGYVQNMVK
FCEA	PceA7	DFWNNPEPIK
	PceA8	TSPSLISSATVGK
	TceA2	DVDDLLSAGK
TeeA	TceA3	VSSIIEPR
ICEA	TceA4	VNNEPWWVTTR
	TceA5	YFGASSVGAIK
	VcrA1	WGLYGPPHDSAPPDGSVPK
	VcrA2	YFGAGDVGALNLADPK
VcrA	VcrA3	VPDHAVPINFK
	VcrA4	GVYEGPPDAPFTSWGNR
	VcrA6	DQPWYVK

Quantitative Analysis

Amount (moles)

LOD: Limit of Detection LLOQ: Lower Limit of Quantitation ULOQ: Upper Limit of Quantitation

Source: McCoss Lab, Skyline Workshop 2017, University of Washington

Quantitative Analysis

$$R_0 = k_{0/i} \cdot n_0 + R_i$$
 $n_0 = \left(\frac{R_0 - R_i}{k_{0/i}}\right)$

Where: $k_{0/i}$ = is the slope of the standard curve $R_i \approx 0$ Area ratio from a blank ... only internal std

Instrument Detection Limit (IDL) vs Method Detection Limit (MDL)

IDL = Instrument Detection Limit

- Peptides injected at a range of concentrations (0.1 fmol/ul to 250 fmol/ul)
- Instrument variability check
- Lower level detection limit established per peptide

MDL = Method Detection Limit

- Peptides injected at a range of concentrations (0.1 fmol/ul to 250 fmol/ul)
- Peptides prepared as experimental samples (extraction, digestion, cleanup)
- Samples run with the optimized SRM method
- Lower level of quantification (LLOQ) and level of detection (LOD) established for each peptide

Method Detection Limit (MDL)

Method Detection Limit (MDL)

			MDL 1	MDL2	MDL3	Established	
Protein	ID	Peptide ¹		fmol/mL		MDL	
	FdhA2	SGSEIAFTGGLIK	3	3	3	3	
FdhA	FdhA5	ALGIVYLDSQA R	3	3	1	3	
·	FdhA8	NQAVSAPGEAK	3	3	3	3	
	PceA4	IATQIPLLQDAA R	9	9	9	9	
D A	PceA5	LESGYVQNMVK	3	3	3	3	
rceA	PceA7	DFWNNPEPIK	1	1	1	1	
	PceA8	TSPSLISSATVG K	0.3	0.3	1	1	
ТсеА	TceA2	DVDDLLSAGK	0.3	3	3	3	
	TceA3	VSSIIEPR	0.3	0.3	1	1	
	TceA4	VNNEPWWVTT R	9	9	9	9	
	TceA5	IDPeptide1FdhA2SGSEIAFTGGLIKFdhA5ALGIVYLDSQARFdhA8NQAVSAPGEAKPceA4IATQIPLLQDAARPceA5LESGYVQNMVKPceA7DFWNNPEPIKPceA8TSPSLISSATVGKTceA2DVDDLLSAGKTceA3VSSIIEPRTceA4VNNEPWWVTTRTceA5YFGASSVGAIKVcrA1WGLYGPPHDSAPPDGSVPKVcrA3VPDHAVPINFKVcrA4GVYEGPPDAPFTSWGNRVcrA6DQPWYVK	0.3	0.3	1	1	
	VcrA1	WGLYGPPHDSAPPDGSVPK	9	9	3	9	
	VcrA2	YFGAGDVGALNLADPK	27	27	27	27	
VcrA	VcrA3	VPDHAVPINFK	0.3	0.3	1	1	
	VcrA4	GVYEGPPDAPFTSWGNR	83	27	27	83	
	VcrA6	DQPWYVK	1	1	1	1	
1 Bolded letters denote beaus 13 C and 15 N labeled amino acid: the maximum of three MDL test replicates was established as the MDL							

RDase Concentration Detection in Pure Cultures

		Providually reported	Approximate DHC cell concentrations			
Peptide ID	Peptide Sequence	Previously reported	10^7	5.25E+07	1.71E+07	
		concentrations	SDC-9	DHC 195	DHC FL-2	
FdhA 2	SGSEIAFTGGLIK	KB1 culture (TCE): 3100 -	3,085.0	115.26	#N/A	
FdhA 5	ALGIVYLDSQAR	3500 fmol/mL; D2 culture:	4,162.5	207.70	6.37	
FdhA 8	NQAVSAPGEAK	2300-3500 fmol/mL	#N/A	#N/A	#N/A	
PceA4	IATQIPLLQDAAR		4,617.5	#N/A	#N/A	
PceA5	LESGYVQNMVK	D2 outure: 45 fmol/ml	1,572.5	#N/A	#N/A	
PceA7	DFWNNPEPIK	Dz culture. 45 mol/mL,	11,670.8	#N/A	#N/A	
PceA8	TSPSLISSATVGK		#N/A	#N/A	#N/A	
TceA2	DVDDLLSAGK	KB1 culture (TCE): 300	13,948.8	50.51	5.51	
TceA3	VSSIIEPR	fmol/ml: D2 culture (PCE):	2,074.3	367.01	#N/A	
TceA4	VNNEPWWVTTR	Milline, D2 culture (FCE).	#N/A	#N/A	#N/A	
TceA5	YFGASSVGAIK	850-2300 IM0I/ML	#N/A	235.77	21.34	
VcrA1	WGLYGPPHDSAPPDGSVPK		#N/A	#N/A	#N/A	
VcrA2	YFGAGDVGALNLADPK	Difficult to quantify due to	#N/A	#N/A	#N/A	
VcrA3	VPDHAVPINFK	Difficult to qualitity due to	397.5	#N/A	#N/A	
VcrA4	GVYEGPPDAPFTSWGNR	low peptide sensitivity	#N/A	#N/A	#N/A	
VcrA6	DQPWYVK		#N/A	#N/A	#N/A	

Conclusions

- Sequenced SDC-9 genome
- Annotated RDase genes and 32 RDase peptides
- Found 14 conservative RDases PRM candidates
- Identified all of the isotopically labelled RDases in culture samples
- Quantified RDases in culture samples

Battelle Team

Dr. Craig Bartling

Larry Mullins

PPE

Dr. Kate Kucharzyk

NAVFAC NW Dr. Malcolm Gander

USACE ERDC

Dr. Mandy Michalsen Dr. Fiona Crocker

<u>Aptim</u>

Dr. Paul Hatzinger Dr. Mark Fuller

Scissortail Solutions

Dr. John Wilson

University of Tennessee-Knoxville

Dr. Frank Loeffler

- Dr. Fadime Kara Murdoch
- Dr. Steve Higgins

University of Oregon

Dr. Jack Istook

NAVFAC EXWC

Ms. Kenda Neil

Conoco-Philips

Dr. Jennifer Harris-Bush

Thank you! Questions:

kucharzyk@battelle.org

800.201.2011 | solutions@battelle.org | www.battelle.org