Expansion of the Molecular Biological Toolbox: Environmental Proteomics Predicts *In Situ* Degradation Rates

Mandy M. Michalsen^{1*}, Ember Korver², Katarzyna H. Kucharzyk³, Jayda Meisel³, Paul Hatzinger⁴, Frank Löffler⁵, Fadime Kara-Murdoch⁵, John Wilson⁶, Jonathan Istok⁷

 ^{1*} Presenter, U.S. Army Engineer Research Development Center,
 ²Seattle District U.S. Army Corps of Engineers, ³Battelle Memorial Institute, ⁴APTIM, ⁵University of Tennessee Knoxville, ⁶Scissortail LLC, ⁷Oregon State University

April 17, 2019

US Army Corps of Engineers®

U.S.ARMY

Innovative solutions for a safer, better world

k_{cisDCE} vs. Dehalococcoides cell abundance: Can we do better?

Data from BioPIC available online: https://www.serdp-estcp.org/content/download/37095/354098/file/ER-201129-FR.pdf

- SDC-9 metagenome sequenced;
- RDase genes identified and RDase peptides annotated
- Correct* RDase peptides used to identify peptide targets in SDC-9 proteomics
- Approach avoids false negative peptide detection results

*metagenomic guided proteomics reduces probability of misalignment of peptides or using incorrectly annotated sequences from public databases

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

SDC-9 Metagenome Sequencing

RDaseA Locus	RDaseB Locus	Number of TM Helices in RDaseB	Putative taxonomy	TAT Signal	Percent amino acid identity	Accession number of Best NCBI Alignment	Predicted gene
scaffold-6337_195	scaffold-6337_193	3	Dehalococcoides	Yes	99%	WP_081042195.1	
scaffold-6337_194	scaffold-6337_193	3	Dehalococcoides	Yes	100%	WP_081042194.1	
scaffold-352_158	ND		Dehalococcoides	Yes	100%	BAZ97963.1	
scaffold-6337_252	scaffold-6337_251	3	Dehalococcoides	Yes	100%	WP_010935983.1	
scaffold-352_212	scaffold-352_213	3	Dehalococcoides	Yes	99%	AEI59454.1	vcrA
scaffold- 178_59	scaffold-178_58	3	Dehalococcoides	Yes	99%	WP_062900263.1	tceA
scaffold-3176_24	scaffold-3176_25	3	Dehalobacter	Yes	94%	CAD28790.2	pceA
scaffold-6337_160	ND		Dehalococcoides	Yes	100%	BAZ97963.1	
scaffold- 133_66	scaffold-133_67	3	Dehalobacter	Yes	40%	WP_015043198.1	
scaffold-2271_52	scaffold-2271_51	3	Dehalococcoides	Yes	100%	WP_010935983.1	
scaffold-352_192	scaffold-352_191	3	Dehalococcoides	Yes	100%	WP_081042194.1	
scaffold-3175_18	scaffold-3175_19	3	Desulfitobacterium	Yes	100%	CDX01551.1	
scaffold-3176_29	scaffold-3176_30	3	Dehalobacter/ Desulfitobacterium	Yes	82%	WP_025206074.1/CDX0 2974.1	pceA
scaffold-352_193	scaffold-352_191	3	Dehalococcoides	Yes	99%	WP_081042195.1	
	RDaseA Locusscaffold-6337_195scaffold-6337_194scaffold-337_194scaffold-352_158scaffold-352_212scaffold-352_212scaffold-352_212scaffold-3176_24scaffold-6337_160scaffold-3176_24scaffold-3221_52scaffold-352_192scaffold-3175_18scaffold-3176_29scaffold-3176_29	RDaseA LocusRDaseB Locusscaffold-6337_195scaffold-6337_194scaffold-6337_194scaffold-6337_193scaffold-352_158NDscaffold-6337_252scaffold-6337_251scaffold-352_212scaffold-352_213scaffold-352_212scaffold-3176_24scaffold-3176_24scaffold-133_66scaffold-2271_52scaffold-133_67scaffold-352_192scaffold-2271_51scaffold-3175_18scaffold-3175_19scaffold-3176_29scaffold-3176_30scaffold-3176_29scaffold-3176_30scaffold-3176_29scaffold-3176_30scaffold-3176_29scaffold-3176_30scaffold-3176_29scaffold-3176_30scaffold-352_193scaffold-3176_30	RDaseA LocusRDaseB LocusNumber of TM Helices in RDaseBscaffold-6337_195scaffold-6337_1933scaffold-6337_194scaffold-6337_1933scaffold-6337_194scaffold-6337_1933scaffold-352_158NDscaffold-6337_252scaffold-6337_2513scaffold-352_212scaffold-352_2133scaffold-352_212scaffold-352_2133scaffold-352_212scaffold-3176_253scaffold-3176_24scaffold-178_583scaffold-3176_24scaffold-3176_253scaffold-337_160NDscaffold-133_66scaffold-2271_513scaffold-2271_52scaffold-2271_513scaffold-352_192scaffold-3175_193scaffold-3175_18scaffold-3175_193scaffold-3176_29scaffold-3176_303scaffold-352_193scaffold-3176_303	RDaseA LocusRDaseB LocusNumber of TM Helices in RDaseBPutative taxonomyscaffold-6337_195scaffold-6337_1933Dehalococcoidesscaffold-6337_194scaffold-6337_1933Dehalococcoidesscaffold-6337_195NDDehalococcoidesscaffold-6337_252scaffold-6337_2513Dehalococcoidesscaffold-6337_252scaffold-6337_2513Dehalococcoidesscaffold-6337_252scaffold-352_2133Dehalococcoidesscaffold-352_212scaffold-352_2133Dehalococcoidesscaffold-352_212scaffold-178_583Dehalococcoidesscaffold-3176_24scaffold-3176_253Dehalococcoidesscaffold-6337_160NDDehalococcoidesscaffold-6337_162scaffold-133_673Dehalobacterscaffold-2271_52scaffold-2271_513Dehalococcoidesscaffold-352_192scaffold-352_1913Dehalococcoidesscaffold-3175_18scaffold-3176_303Dehalobacter/ Desulfitobacteriumscaffold-3175_193scaffold-3176_303Dehalobacter/ Desulfitobacteriumscaffold-3176_29scaffold-3176_303Dehalococcoidesscaffold-352_193scaffold-3176_303Dehalobacter/ Desulfitobacterium	RDaseA LocusRDaseB LocusNumber of TM Helices in RDaseBPutative taxonomyTAT Signalscaffold-6337_195scaffold-6337_1933DehalococcoidesYesscaffold-6337_194scaffold-6337_1933DehalococcoidesYesscaffold-352_158NDDehalococcoidesYesscaffold-6337_252scaffold-6337_2513DehalococcoidesYesscaffold-6337_252scaffold-352_2133DehalococcoidesYesscaffold-352_212scaffold-3176_253DehalococcoidesYesscaffold-3176_24scaffold-178_583DehalococcoidesYesscaffold-3176_24scaffold-3176_253DehalococcoidesYesscaffold-337_160NDDehalococcoidesYesscaffold-6337_160NDDehalococcoidesYesscaffold-133_66scaffold-133_673DehalococcoidesYesscaffold-2271_52scaffold-32_1913DehalococcoidesYesscaffold-3175_18scaffold-3175_193DehalococcoidesYesscaffold-3175_193DehalococcoidesYesYesscaffold-3175_193DehalococcoidesYesYesscaffold-3175_18scaffold-3176_303Dehalobacter/ DesulfitobacteriumYesscaffold-3176_29scaffold-3176_303Dehalobacter// DesulfitobacteriumYesscaffold-3175_193Dehalobacter/ DesulfitobacteriumYesscaffold-3176_29scaffold-3176_30 <td>RDaseA LocusNumber of TM Helices in RDaseBPutative taxonomyTAT SignalPercent amino acid identityscaffold-6337_195scaffold-6337_1933DehalococcoidesYes99%scaffold-6337_194scaffold-6337_1933DehalococcoidesYes100%scaffold-352_158NDDehalococcoidesYes100%scaffold-352_212scaffold-6337_2513DehalococcoidesYes100%scaffold-352_212scaffold-352_2133DehalococcoidesYes99%scaffold-352_212scaffold-178_583DehalococcoidesYes99%scaffold-3176_24scaffold-3176_253DehalococcoidesYes99%scaffold-6337_160NDDehalococcoidesYes90%scaffold-6337_160NDDehalococcoidesYes90%scaffold-3176_24scaffold-133_673DehalococcoidesYes100%scaffold-2271_52scaffold-133_673DehalococcoidesYes100%scaffold-2271_52scaffold-352_1913DehalococcoidesYes100%scaffold-3175_18scaffold-3175_193DehalococcoidesYes100%scaffold-3176_29scaffold-3176_303DehalococcoidesYes100%scaffold-3176_133DehalococcoidesYes100%scaffold-3175_18scaffold-3176_303DehalobccteriumYes82%scaffold-352_193scaffold-352_1913Dehaloco</br></br></br></td> <td>RDaseA LocusRDaseB LocusNumber of TM Helices in RDaseBPutative taxonomyTAT SignalPercent amino acid identityAccession number of Best NCBI Alignmentscaffold-6337_195scaffold-6337_1933DehalococcoidesYes99%WP_081042195.1scaffold-6337_194scaffold-6337_1933DehalococcoidesYes100%WP_081042194.1scaffold-352_158NDDehalococcoidesYes100%BAZ97963.1scaffold-352_212scaffold-6337_2513DehalococcoidesYes99%WP_010935983.1scaffold-352_212scaffold-352_2133DehalococcoidesYes99%WP_010935983.1scaffold-352_212scaffold-352_2133DehalococcoidesYes99%WP_06200263.1scaffold-352_12scaffold-3176_24scaffold-3176_253DehalococcoidesYes99%WP_06200263.1scaffold-337_160NDDehalococcoidesYes94%CAD28790.2scaffold-337_160NDDehalobacterYes94%CAD28790.2scaffold-337_160NDDehalococcoidesYes100%WP_015043198.1scaffold-337_161Scaffold-133_673DehalobacterYes100%WP_010935983.1scaffold-322_19scaffold-3175_193DehalobacteriYes100%WP_010935983.1scaffold-322_19Scaffold-33_6Yes100%WP_010935983.1Scaffold-3175_19scaffold-3175_19Scaffold-3176_9Yes</td>	RDaseA LocusNumber of TM Helices in RDaseBPutative 	RDaseA LocusRDaseB LocusNumber of TM Helices in RDaseBPutative taxonomyTAT SignalPercent amino acid identityAccession number of Best NCBI Alignmentscaffold-6337_195scaffold-6337_1933DehalococcoidesYes99%WP_081042195.1scaffold-6337_194scaffold-6337_1933DehalococcoidesYes100%WP_081042194.1scaffold-352_158NDDehalococcoidesYes100%BAZ97963.1scaffold-352_212scaffold-6337_2513DehalococcoidesYes99%WP_010935983.1scaffold-352_212scaffold-352_2133DehalococcoidesYes99%WP_010935983.1scaffold-352_212scaffold-352_2133DehalococcoidesYes99%WP_06200263.1scaffold-352_12scaffold-3176_24scaffold-3176_253DehalococcoidesYes99%WP_06200263.1scaffold-337_160NDDehalococcoidesYes94%CAD28790.2scaffold-337_160NDDehalobacterYes94%CAD28790.2scaffold-337_160NDDehalococcoidesYes100%WP_015043198.1scaffold-337_161Scaffold-133_673DehalobacterYes100%WP_010935983.1scaffold-322_19scaffold-3175_193DehalobacteriYes100%WP_010935983.1scaffold-322_19Scaffold-33_6Yes100%WP_010935983.1Scaffold-3175_19scaffold-3175_19Scaffold-3176_9Yes

14 unique RDase genes identified

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

4. Regression Analysis

4

Targeted Proteomics Establish MDL and IDL for Selected Peptides

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

We Can "See" Them But Can We Quantify? IDL and MDL Replicate Experiment Results

			MDL 1	MDL2	MDL3	Established
Protein	ID	Peptide ¹		fmol/mL		MDL
	FdhA2	SGSEIAFTGGLI K	3	3	3	3
FdhA	FdhA5	ALGIVYLDSQA R	3	3	1	3
	FdhA8	NQAVSAPGEA K	3	3	3	3
	PceA4	IATQIPLLQDAA R	9	9	9	9
DeeA	PceA5	LESGYVQNMV K	3	3	3	3
PCEA	PceA7	DFWNNPEPI K	1	1	1	1
	PceA8	TSPSLISSATVG K	0.3	0.3	1	1
	TceA2	DVDDLLSAG K	0.3	3	3	3
Tee A	TceA3	VSSIIEP R	0.3	0.3	1	1
ICEA	TceA4	VNNEPWWVTT R	9	9	9	9
	TceA5	YFGASSVGAI K	0.3	0.3	1	1
	VcrA1	WGLYGPPHDSAPPDGSVP K	9	9	3	9
	VcrA2	YFGAGDVGALNLADP K	27	27	27	27
VcrA	VcrA3	VPDHAVPINF K	0.3	0.3	1	1
	VcrA4	GVYEGPPDAPFTSWGN R	83	27	27	83
	VcrA6	DQPWYV K	1	1	1	1
¹ Bolded letters denot	te heavy ¹³ C and ¹⁵	N labeled amino acid: the maximum of th	ree MDL test r	eplicates was es	tablished as the I	MDL

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

How Low Can We Go?

Prepare Dehalococcoides titers using SDC-9 and validate quantitative qProt assay!

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

qProt Assay Validation Results

			Previously reported ^{d-e}						
		1.3x10 ⁵	2.2x10 ⁶	3.1x10 ⁷	1.3x10 ⁵	2.2x10 ⁶	3.1x10 ⁷	approx. protein concentrations in	
	Peptide	Peptide co	Peptide concentration in culture, Protein concentration in culture,			in culture,	culture, fmol/mL		
Protein	ID		fmol/mL		fmol	/mL (protein/	(cell)°	(protein/cell)°	
	FdhA2ª	<3.0x10 ⁰	<3.0x10 ⁰	8.5x10 ⁰	2.2.400	2.2.4.00	0 5 4 0 0	^d KB1, D2 culture(TCE):	
FdhA	FdhA5	<3.0x10 ⁰	<3.0x10 ⁰	1.1x10 ¹	<3.0 x10°	<3.0 x10°	8.5x10° (<mark>3.8x10³</mark>)	$9.0x10^{1} - 1.0x10^{2}$ (2.3x10 ³ - 3.5x10 ³)	
	PceA4 ª	<9.0x10 ⁰	<9.0x10 ⁰	2.1x10 ¹					
DeeA	PceA5 ª	6.3x10 ²	1.9x10 ²	6.8x10 ¹	C 2::10 ² 1 0:	1.0×10^{2}		4.4×101	
PCEA	PceA7	<1.0x10 ⁰	2.2x10 ¹	2.2x10 ¹ 1.9x10 ¹ 6.3x10 ² 1.9x1	1.9810-	4.4X10-			
	PceA8	<1.0x10 ⁰	1.7x10 ¹	1.2x10 ¹					
	TceA2 ª	<3.0x10 ⁰	1.9x10 ¹	1.3x10 ¹					
TcoA	TceA3 ª	<1.0x10 ⁰	3.1x10 ¹	2.1x10 ¹	<1.0x10 ⁰	2.5x10 ¹ (<mark>1.1x10⁴)</mark>	2.5x10 ¹	1.7x10 ¹	
TCEA	TceA4	<9.0x10 ⁰	<9.0x10 ⁰	2.3x10 ¹	(1.1x10 ⁴)		(7.7x10 ³)	(^e 1.1x10 ³)	
	TceA5	<1.0x10 ⁰	2.4x10 ¹	1.7x10 ¹					
	VcrA1	<9.0x10 ⁰	1.7x10 ²	1.8x10 ¹					
	VcrA2	<2.7x10 ¹	7.6x10 ¹	4.9x10 ¹		1	9.3x10 ⁰ (4.2x10 ³)	^d Difficult to quantify	
VcrA	VcrA3 ª	<1.0x10 ⁰	5.7x10 ¹	9.3x10 ¹	<1.0x10°	0 ⁰ 5.7x10 ¹ (2.6x10 ⁴)		due to low peptide sensitivity	
	VcrA4	<8.3x10 ¹	<8.3x10 ¹	<8.3x10 ¹]				
	VcrA6	<1.0x10 ⁰	5.8x10 ¹	1.1x10 ¹					

^aQuantifier peptides used to estimate protein abundance, in cases where multiple quantifier proteins exist those abundances are averaged to obtain ^{\Box} protein abundance, a 1:1 peptide to protein ratio is assumed; ^b15mL of each cell density were extracted, corresponding to 2x10⁶ to 5x10⁸ *Dhc* cells extracted; ^cDetected proteins were expressed in both fmol/mL and protein/cell concentration units; ^dWerner et al. 2009. Environmental microbiology, 11(10), 2687-2697; ^eRowe, A. et al. (2012). Environmental science & technology, 46(17), 9388-9397.

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

qProt Assay Validation Results

			Previously reported ^{d-e}							
		1.3x10 ⁵	2.2x10 ⁶	3.1x10 ⁷	1.3x10 ⁵	2.2x10 ⁶	3.1x10 ⁷	approx. protein concentrations in		
	Peptide	Peptide co	ncentration in culture,		Protein co	oncentration	culture, fmol/mL			
Protein	ID		fmol/mL		fmol	/mL (<mark>protein</mark> /	cell)	(protein/cell) ^c		
	FdhA2ª	<3.0x10 ⁰	<3.0x10 ⁰	8.5x10 ⁰	0.0.400	2.2.4.00	0 5 400	^d KB1, D2 culture(TCE):		
FdhA	FdhA5	<3.0x10 ⁰	<3.0x10 ⁰	1.1x10 ¹	<3.0 x10°	<3.0 x10°	8.5x10 ^o (<mark>3.8x10³</mark>)	$9.0x10^{1} - 1.0x10^{2}$ (2.3x10 ³ - 3.5x10 ³)		
	PceA4 ª	<9.0x10 ⁰	<9.0x10 ⁰	2.1x10 ¹						
DeeA	PceA5 ª	6.3x10 ²	1.9x10 ²	6.8x10 ¹	C 2v10 ² 1 0v10 ²	1.0×10^{2}	1.0×10^{2}	1.0.102	4.4×101	
PCEA	PceA7	<1.0x10 ⁰	2.2x10 ¹	1.9x10 ¹	1.9X10-	4.4X10 ⁻				
	PceA8	<1.0x10 ⁰	1.7x10 ¹	1.2x10 ¹						
	TceA2 ª	<3.0x10 ⁰	1.9x10 ¹	1.3x10 ¹						
TcoA	TceA3 ª	<1.0x10 ⁰	3.1x10 ¹	2.1x10 ¹	<1.0x10 ⁰	1.0x10 ⁰ 2.5x10 ¹ (1.1x10 ⁴)	1.7x10 ¹			
TCEA	TceA4	<9.0x10 ⁰	<9.0x10 ⁰	2.3x10 ¹			(1.1x10 ⁴)	(7.7x10 ³)	(^e 1.1x10 ³)	
	TceA5	<1.0x10 ⁰	2.4x10 ¹	1.7x10 ¹						
	VcrA1	<9.0x10 ⁰	1.7x10 ²	1.8x10 ¹						
	VcrA2	<2.7x10 ¹	7.6x10 ¹	4.9x10 ¹	1 0 100	5 7 401	9.3x10 ⁰ (4.2x10 ³)	^d Difficult to quantify		
VcrA	VcrA3 ª	<1.0x10 ⁰	5.7x10 ¹	9.3x10 ¹	<1.0x10°	5./x10 ¹ (2.6x10 ⁴)		due to low peptide sensitivity		
	VcrA4	<8.3x10 ¹	<8.3x10 ¹	<8.3x10 ¹						
	VcrA6	<1.0x10 ⁰	5.8x10 ¹	1.1x10 ¹						

^aQuantifier peptides used to estimate protein abundance, in cases where multiple quantifier proteins exist those abundances are averaged to obtain ^b protein abundance, a 1:1 peptide to protein ratio is assumed; ^b15mL of each cell density were extracted, corresponding to $2x10^6$ to $5x10^8$ *Dhc* cells extracted; ^cDetected proteins were expressed in both fmol/mL and protein/cell concentration units; ^dWerner et al. 2009. Environmental microbiology, 11(10), 2687-2697; ^eRowe, A. et al. (2012). Environmental science & technology, 46(17), 9388-9397.

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

qProt Assay Validation Results

			Previously reported ^{d-e}						
		1.3x10 ⁵	2.2x10 ⁶	3.1x10 ⁷	1.3x10⁵	2.2x10 ⁶	3.1x10 ⁷	concentrations in	
	Peptide	Peptide co	ncentration in culture, Protein concentr		oncentration	in culture,	culture, fmol/mL		
Protein	ID		fmol/mL		fmol/mL (<mark>protein/cell</mark>)°		(protein/cell)°		
	FdhA2ª	<3.0x10 ⁰	<3.0x10 ⁰	8.5x10 ⁰	0.0.400	12.0100	0 5 4 0 0	^d KB1, D2 culture(TCE):	
FdhA	FdhA5	<3.0x10 ⁰	<3.0x10 ⁰	1.1x10 ¹	<3.0 x10°	<3.0 x10°	8.5x10° (3.8x10 ³)	$9.0x10^{1} - 1.0x10^{2}$ (2.3x10 ³ - 3.5x10 ³)	
	PceA4 ª	<9.0x10 ⁰	<9.0x10 ⁰	2.1x10 ¹					
BcoA	PceA5 ª	6.3x10 ²	1.9x10 ²	6.8x10 ¹	6.3x10 ² 1.9x10 ²	6.3x10 ² 1.9x10 ²	4.4×101		
PCEA	PceA7	<1.0x10 ⁰	2.2x10 ¹	1.9x10 ¹			4.4710		
	PceA8	<1.0x10 ⁰	1.7x10 ¹	1.2x10 ¹					
	TceA2 ª	<3.0x10 ⁰	1.9x10 ¹	1.3x10 ¹					
TcoA	TceA3 ª	<1.0x10 ⁰	3.1x10 ¹	2.1x10 ¹	<1.0x10 ⁰	<1.0x10 ⁰ 2.5x10 ¹ (1.1x10 ⁴)	2.5x10 ¹	1.7x10 ¹	
TCEA	TceA4	<9.0x10 ⁰	<9.0x10 ⁰	2.3x10 ¹			(7.7x10 ³)	(^e 1.1x10 ³)	
	TceA5	<1.0x10 ⁰	2.4x10 ¹	1.7x10 ¹					
	VcrA1	<9.0x10 ⁰	1.7x10 ²	1.8x10 ¹					
	VcrA2	<2.7x10 ¹	7.6x10 ¹	4.9x10 ¹		1		^d Difficult to quantify	
VcrA	VcrA3 ª	<1.0x10 ⁰	5.7x10 ¹	9.3x10 ¹	<1.0x10 ⁰	5.7x10 ¹ (2.6x10 ⁴)	9.3x10 ⁰ (4.2x10 ³)	due to low peptide sensitivity	
	VcrA4	<8.3x10 ¹	<8.3x10 ¹	<8.3x10 ¹					
	VcrA6	<1.0x10 ⁰	5.8x10 ¹	1.1x10 ¹					

^aQuantifier peptides used to estimate protein abundance, in cases where multiple quantifier proteins exist those abundances are averaged to obtain ^b protein abundance, a 1:1 peptide to protein ratio is assumed; ^b15mL of each cell density were extracted, corresponding to $2x10^6$ to $5x10^8$ *Dhc* cells extracted; ^cDetected proteins were expressed in both fmol/mL and protein/cell concentration units; ^dWerner et al. 2009. Environmental microbiology, 11(10), 2687-2697; ^eRowe, A. et al. (2012). Environmental science & technology, 46(17), 9388-9397.

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

Joint Base Lewis-McChord Landfill 2

Sediment and groundwater were collected on May 30, 2017

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

JBLM Groundwater Microcosm Study

JBLM Microcosm Study Example Results

Dhc cells mL ⁻¹	k _{cis} , day⁻¹	k _{∨C} , day⁻¹
10 ⁸	68.0 ± 27.0	9.6 ± 2.6
10 ⁷	1.6 ± 0.48	0.28 ± 0.044
10 ⁵	0.023 ± 0.0068	0.0046 ± 0.0014
10 ³	0.0030 ± 0.0007	0.0010 ± 0.0063

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

Obtained good-quality rate coefficients

	-	-		Average Ratio of 95%
Microcosm Test			R2	Confidence Interval to Rate
Replicate	^a k _{cis} , 1/day	^a kvc, 1/day	model	Constant for <i>k</i> cis, and <i>kv</i> C
		JBLM1		
JBLM1_Set1A	62.6 ± 73.1	10.2 ± 3.9	85%	77%
JBLM1_Set1B	57.0 ± 53.7	10.2 ± 3.6	86%	65%
^a JBLM1_Set1C	73.6 ± 146.0	11.3 ± 5.9	77%	125%
JBLM1_Set2A	1.48 ± 0.50	0.31 ± 0.073	88%	29%
JBLM1_Set2B	1.49 ± 0.48	0.34 ± 0.078	89%	28%
^b JBLM1_Set2C	1.68 ± 0.53	0.34 ± 0.070	91%	26%
JBLM1_Set3A	0.024 ± 0.0026	0.0015 ± 0.0018	90%	65%
JBLM1_Set3B	$0.016 \pm 1.20 \mathrm{x10^{-8}}$	$0.00058 \pm 6.6 \times 10^{-8}$	88%	0.0%
JBLM1_Set3C	$0.026 \pm 2.20 \mathrm{x10^{-7}}$	$0.0037 \pm 6.6 \text{x} 10^{-7}$	89%	0.0%
JBLM1_Set4A				
JBLM1_Set4B	0.0013 ± 0.00013	b	91%	
JBLM1_Set4C	0.0014 ± 0.0014	0.000001 ± 0.026	91%	
		JBLM2		
JBLM2_Set1A	1.05 ± 0.94	0.11 ± 0.018	94%	53%
JBLM2_Set1B	1.05 ± 1.14	0.13 ± 0.028	92%	65%
JBLM2_Set1C	1.13 ± 1.28	0.17 ± 0.041	83%	68%
JBLM2 Set1A Dup	0.28 ± 0.038	0.013 ± 0.031	99%	128%

 $^{--}$ indicates no rate was computed; ^aBest fit rate constants ± the 95% confidence interval on the rate constant; ^bNo ethane production was measured; grey-highlighted values did not meet acceptance criteria and were excluded from further analysis

In total, 26 and 15 microcosm tests respectively yielded acceptable quality k_{cis} and k_{vc} rate coefficients to carry forward in correlation analysis

example subset of rate coefficient data analysis provided here; complete results are included in lab demonstration report.

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

Biomarker and Rate Correlations Confirmed

Biomarker abundance correlations with rate coefficients (biomarker abundance, microcosm all time points)													
	Log Biomarker Abundance												
	FdhA	PceA	TceA	VcrA	DHC_16S gene	tceA	vcrA	fdhA	pceA				
Log k _{cis}	0.737	0.571	0.575	0.374	0.844	0.859	0.856	0.801	0.804				
p value	2E-07	6.29E-06	1.2E-06	0.00548	2E-07	2E-07	2E-07	2E-07	2E-07				
n	57	55	62	54	64	64	64	64	62				
Log k _{vc}	0.774	0.797	0.652	0.678	0.932	0.934	0.93	0.905	0.91				
p value	2E-07	2E-07	2.54E05	0.000026	2E-07	2E-07	2E-07	2E-07	2E-07				
n	35	33	34	30	36	36	36	36	36				
	arker abundance correlations with rate coefficients (biomarker abundance, microcosm mid-points only)												
Bioma	rker abune	dance correla	tions with rat	te coefficient	s (biomarker abund	ance, micr	ocosm <mark>mi</mark>	d-points o	nly)				
Bioma	rker abun	dance correla	tions with rat	te coefficient: Log Bior	s (biomarker abund narker Abundance	ance, micr	ocosm <mark>mi</mark>	d-points o	nly)				
Bioma	rker abund FdhA	dance correla PceA	tions with rat TceA	te coefficient Log Bior VcrA	s (biomarker abund narker Abundance DHC_16S gene	ance, micr <i>tceA</i>	rocosm <mark>mi</mark> <i>vcrA</i>	d-points o fdhA	nly) pceA				
Biomar Log k _{cis}	rker abund FdhA 0.852	dance correla PceA 0.793	tions with rat TceA 0.755	te coefficient: Log Bior VcrA 0.725	s (biomarker abund narker Abundance DHC_16S gene 0.863	ance, micr <i>tceA</i> 0.905	ocosm mi vcrA 0.918	d-points o <i>fdhA</i> 0.881	pceA 0.854				
Bioma Log k _{cis} p value	rker abund FdhA 0.852 2E-07	dance correla PceA 0.793 2E-07	tions with rat TceA 0.755 2E-07	te coefficient: Log Bior VcrA 0.725 0.000706	s (biomarker abund narker Abundance DHC_16S gene 0.863 2E-07	ance, micr <i>tceA</i> 0.905 2E-07	ocosm mi vcrA 0.918 2E-07	d-points o <i>fdhA</i> 0.881 2E-07	pceA 0.854 2E-07				
Bioma Log k _{cis} p value n	FdhA 0.852 2E-07 21	dance correla PceA 0.793 2E-07 21	tions with rat TceA 0.755 2E-07 23	te coefficient: Log Bior VcrA 0.725 0.000706 17	s (biomarker abund narker Abundance DHC_16S gene 0.863 2E-07 23	ance, micr tceA 0.905 2E-07 23	vcrA 0.918 2E-07 23	d-points o fdhA 0.881 2E-07 23	pceA 0.854 2E-07 23				
Biomar Log k _{cis} p value n Log k _{VC}	FdhA 0.852 2E-07 21 0.925	PceA 0.793 2E-07 21 0.836	tions with rat TceA 0.755 2E-07 23 0.765	te coefficient: Log Bior VcrA 0.725 0.000706 17 0.916	s (biomarker abund narker Abundance DHC_16S gene 0.863 2E-07 23 0.934	ance, micr tceA 0.905 2E-07 23 0.953	ocosm mi vcrA 0.918 2E-07 23 0.962	d-points o fdhA 0.881 2E-07 23 0.966	pceA 0.854 2E-07 23 0.943				
Bioman Log k _{cis} p value n Log k _{vc} p value	FdhA 0.852 2E-07 21 0.925 2E-07	PceA 0.793 2E-07 21 0.836 2E-07	tions with rat TceA 0.755 2E-07 23 0.765 0.000391	te coefficients Log Bior VcrA 0.725 0.000706 17 0.916 2E-07	s (biomarker abund narker Abundance DHC_16S gene 0.863 2E-07 23 0.934 2E-07	ance, micr tceA 0.905 2E-07 23 0.953 2E-07	ocosm mi vcrA 0.918 2E-07 23 0.962 2E-07	d-points o fdhA 0.881 2E-07 23 0.966 2E-07	pceA 0.854 2E-07 23 0.943 2E-07				

Biomarker and Rate Correlations Confirmed

Biomarker abundance correlations with rate coefficients (biomarker abundance, microcosm all time points)												
	Log Biomarker Abundance											
	FdhA	PceA TceA VcrA DHC_16S gene tceA vcrA fdhA pc										
Log k _{cis}	0.737	0.571	0.575	0.374	0.844	0.859	0.856	0.801	0.804			
p value	2E-07	6.29E-06	1.2E-06	0.00548	2E-07	2E-07	2E-07	2E-07	2E-07			
n	57	55	62	54	64	64	64	64	62			
Log k _{vc}	0.774	0.797	0.652	0.678	0.932	0.934	0.93	0.905	0.91			
p value	2E-07	2E-07	2.54E05	0.000026	2E-07	2E-07	2E-07	2E-07	2E-07			
n	35	33	34	30	36	36	36	36	36			
Bioma	rker abuno	dance correla	tions with rat	te coefficient	s (biomarker abund	ance, micr	ocosm <mark>mi</mark>	d-points o	nly)			
			Log Biomarker Abundance									
				208 2101								
	FdhA	PceA	TceA	VcrA	DHC_16S gene	tceA	vcrA	fdhA	pceA			
Log k _{cis}	FdhA 0.852	PceA 0.793	TceA 0.755	VcrA 0.725	DHC_16S gene 0.863	<i>tceA</i> 0.905	vcrA 0.918	<i>fdhA</i> 0.881	<i>рсеА</i> 0.854			
Log k _{cis} p value	FdhA 0.852 2E-07	PceA 0.793 2E-07	TceA 0.755 2E-07	VcrA 0.725 0.000706	DHC_16S gene 0.863 2E-07	tceA 0.905 2E-07	<i>vcrA</i> 0.918 2E-07	<i>fdhA</i> 0.881 2E-07	<i>pceA</i> 0.854 2E-07			
Log k _{cis} p value n	FdhA 0.852 2E-07 21	PceA 0.793 2E-07 21	TceA 0.755 2E-07 23	VcrA 0.725 0.000706 17	DHC_16S gene 0.863 2E-07 23	tceA 0.905 2E-07 23	vcrA 0.918 2E-07 23	<i>fdhA</i> 0.881 2E-07 23	<i>pceA</i> 0.854 2E-07 23			
Log k _{cis} p value n Log k _{vc}	FdhA 0.852 2E-07 21 0.925	PceA 0.793 2E-07 21 0.836	TceA 0.755 2E-07 23 0.765	VcrA 0.725 0.000706 17 0.916	DHC_16S gene 0.863 2E-07 23 0.934	tceA 0.905 2E-07 23 0.953	vcrA 0.918 2E-07 23 0.962	<i>fdhA</i> 0.881 2E-07 23 0.966	<i>pceA</i> 0.854 2E-07 23 0.943			
Log k _{cis} p value n Log k _{vc} p value	FdhA 0.852 2E-07 21 0.925 2E-07	PceA 0.793 2E-07 21 0.836 2E-07	TceA 0.755 2E-07 23 0.765 0.000391	VcrA 0.725 0.000706 17 0.916 2E-07	DHC_16S gene 0.863 2E-07 23 0.934 2E-07	tceA 0.905 2E-07 23 0.953 2E-07	vcrA 0.918 2E-07 23 0.962 2E-07	<i>fdhA</i> 0.881 2E-07 23 0.966 2E-07	<i>pceA</i> 0.854 2E-07 23 0.943 2E-07			

Improved correlations across the board when using mid-point biomarker abundances only; carried mid-point abundances forward for regression analysis

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

4. Regression Analysis

16

Regression Results

Applying the standard qProt assay yields a MDL of ~ 10^8 protein/mL, which translates to predicted k_{cis} and k_{vc} in the MNA-relevant range of $\geq 10^{-3}$ day⁻¹ (0.3 yr⁻¹)

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

RDase Biomarkers Can Predict Rate Constants

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

RDase Biomarkers Can Predict Rate Constants

"Unfortunately, not all *Dehalococcoides* organisms act on chloroethenes and their presence does not guarantee efficient ethene formation." **Loffler and Edwards (2006)** *Current Opinion in Biotechnology* 17:274-284

"...ethene production was not enhanced in samples exhibiting VC RDase genes abundances 10- to 10 000-fold higher than the Dhc 16S rRNA gene abundance.." **Clark et al. (2018)** *Environmental Science & Technology* 52:13410-13420

1. Measure Biomarker Abundance 2. Measure Rate Constants 3. Evaluate Correlation between Rate Constants and Biomarker Abundance

We only extracted 15 mL of sample from the JBLM microcosms. What could we "see" if we extracted 1000 mL from a field sample?

<i>Dhc</i> cells/mL	Microcosm Set	Volume Extracted, mL	VcrA, fmol/extract	TceA, fmol/extract	Rate constant, per year
10 ⁷	2(B)	15	1.0E+04	1.2E+04	580
10 ⁵	3(C)	15	7.6E+02	9.9E+02	8.4
		Condition in a F Amount of	ield Sample with VcrA and TceA	th an Equivalei Extracted	nt
		1000	1.0E+04	1.2E+04	8.8
		1000	7.6E+02	9.9E+02	0.13
		Met	hod Detection L	imit	
			1.0E+00	3.0E+00	

We only extracted 15 mL of sample from the JBLM microcosms. What could we "see" if we extracted 1000 mL from a field sample?

We only extracted 15 mL of sample from the JBLM microcosms. What could we "see" if we extracted 1000 mL from a field sample?

Key Points

- Confirmed quantification of genes and protein biomarkers at environmentally-relevant *Dhc* abundances
- Confirmed **positive and significant correlation** between gene and protein biomarkers; quantified relationship via regression analysis
- Rate **predictive power** of proteins and genes were confirmed over a range of cell abundance and corresponding activity levels
- Recommend "GO" decision to proceed with field validation

Thank You

Air Force, Navy, Army Participants

