Assessment of Plume Stability in Monitored Natural Attenuation Assessments Using the Centre of Mass and Total Plume Mass Approach

Samuel Mohr & Kate Naude

© Copyright 2017 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

Presentation Outline

- The sustainable remediation approach
- Methods for assessing plume stability
- Case study:
 - Site setting
 - Plume area and mass calculations
 - Plume centre of mass
- Conclusions

ERM's Sustainable Remediation Approach

MNA: A Sustainable Remedial Approach

- Monitored Natural Attenuation (MNA) has been steadily gaining popularity as a plausible remediation strategy over the past two decades
- Three main criteria for adopting an MNA approach:

Methods For Assessing Plume Stability

Graphical Analysis

- Concentration isopleth maps
- Concentration vs distance
- Concentration vs time
- **Statistical Analysis**
- Mann Kendal Analysis
- Mann Whitney U-test

Mann-Kendall Results						
0-8 Quarter Evaluation						
MW1	Decreasing					
MW2	Stable/No Trend					
MW3	Stable/No Trend					
MW4	Decreasing					
MW5	Increasing					

MW2 - TCE

Quarters (1/4 years)

12 13

Site Setting

- Operational petrochemical facility
- Sand dominated sediments to 6m bgl, followed by dense clay
- Groundwater at 1-2m bgl, groundwater flow in a westerly direction

Large gasoline spill in 2011

A site investigation and remediation programme was initiated which included:

- Plume delineation & monitoring well installation,
- Product recovery well installation & passive skimming; and
- Groundwater monitoring of the plume & surrounding area

Plume Area and Mass Calculation

The business of sustainability

Plume Area and Mass Calculation

- Isopleth maps were generated as 3 dimensional surfaces
- Plume threshold value is set and a grid volume report is generated giving:
 - Planar area (m²)
 - Grid volume (µg/L•m²)

Average $[C] = \frac{Grid \ Volume \ (\mu g/L \bullet m^2)}{Planar \ Area \ (m^2)}$

Actual Avg [C] = Average[C] + Plume Threshold [C]

$$Plume Mass (kg) = \frac{[Planar Area] \times [Actual (C)] \times [b] \times [n_{eff}] \times [\frac{1000L}{m3}]}{1E + 9\mu g/kg}$$

Plume Area and Mass Calculation

Parameter	R ²	Regression Line Slope	95% Lower Confidence Limit	95% Upper Confidence Limit	Trend Analysis Conclusion
Concentration	0.69	-1.3	-2.44	-0.32	Decreasing
Mass	0.88	-0.06	-0.08	-0.04	Decreasing
Area	0.77	-4.6	-7.47	-1.72	Decreasing

9

The business of sustainability

Plume Centre of Mass

- The plume centre of mass (COM) is essentially the geometric centre (or centroid) of the plume
- Plume COM is generated from Surfer grid files
- Grid file data (X,Y,Z) is filtered to remove all node points which are less than the defined threshold (Z) value

$$COM(X) = \frac{\sum_{1}^{n} X \times Z}{\sum_{1}^{n} Z} \quad COM(Y) = \frac{\sum_{1}^{n} Y \times Z}{\sum_{1}^{n} Z}$$

Typical Plume COM behaviour:

- Expanding plume migrates downgradient
- Shrinking plume migrates up-gradient (back towards source)
- Stable plume minimal lateral movement

	А	В	С	D	E	
1	X –	Y	Z(ug/L) →	X*Z	Y*Z	
2	-43692.46	-3746066	1699.225	-74243342	-6365409922	
3	-43694.78	-3746066	1696.621	-74133471	-6355652819	
4	-43694.78	-3746063	1653.241	-72237990	-6193144531	
5	-43692.46	-3746063	1648.424	-72023702	-6175100542	
6	-43694.78	-3746068	1579.576	-69019243	-5917200603	
7	-43692.46	-3746068	1571.028	-68642105	-5885179655	
8	-43697.1	-3746066	1569.345	-68575821	-5878869454	
9	-43697.1	-3746063	1547.318	-67613310	-5796351718	
1052	Summatio	n	471541.6	-2.06E+10	-1.7664E+12	

Plume Centre of Mass

The business of sustainability

Conclusions

- Total mass approach is a useful tool within the MNA toolbox to demonstrate that natural attenuation processes occurring within a plume
- Centre of Mass approach is a useful method to provide a meaningful assessment of plume stability
- Data generated from the case study supports the position that MNA is an appropriate and sustainable approach to employ at the site
- As always, there are limitations...

The business of sustainability

Contacts

Samuel Mohr Principal Consultant | Cape Town, South Africa T| +27 21 681 5400 E| samuel.mohr@erm.com

ERM

www.erm.com

