

PREDICTIVE MODELING OF DOWNGRADIENT CONCENTRATIONS AND OVERALL CLOSURE TIMEFRAME RESULTING FROM BIOREMEDIATION

<u>Fritz Krembs</u>, P.E., P.G., George Mathes, P.E., Mitchell, R. Olson, Ph.D., P.E., Michael G. Sweetenham, P.G.

Project Overview

- Industrial facility since 1975
- RCRA program / TCEQ oversight / TRRP
- Groundwater impacts 10-25 ft
 - PCE + degrad. products
 - TCA + degrad. products
 - Chlorinated benzenes (CBs)
- Impacts from 1970s era former stormwater pond

Conceptual Site Model

- Large, dilute plume
- Cis-DCE and vinyl chloride indicate reductive dechlorination
- Thin fine sand bounded above and below by fine-grained strata

Site Strategy

	PLUME MANAGEMENT ZONE (PMZ)	MONITORED NATURAL ATTENUATION (MNA)	ACTIVE REMEDIATION
On-Site	PCE, TCA, CBs (ACLs)	TCA, CBs (AALs)	PCE (ACLs/MCLs)
Off-Site	na	PCE (MCLs)	PCE (MCLs)

Remediation Technology Selection

- Economical reagents required for large plume
- Expanding footprint of treatment needed for large plume with access restrictions
- Persistent process needed for middle/late stage plume
- Cis-DCE and vinyl chloride indicated reductive dechlorination ongoing

In-Situ Bioremediation (ISB) most compatible with above criteria

Modeling and ISB Design

- Response Action Plan (RAP) submitted to TCEQ
- Conceptual design
 - Source area treatment
 - Client property line treatment
- Per TCEQ: State proposed 'reasonable time frame' and provide justification
- Use model to assess when ISB attains MCLs off-site

Step 1: Model Selection

- Remediation
- EPA-vetted
- Biodegradation
- Back-diffusion
- Analytical model

REMChlor

Remediation Evaluation Model for Chlorinated Solvents

Version 1.0

Step 2: Model Calibration

- Calibrate to historical data
 - Multiple time points
 - Multiple locations

- Capture plume-scale behavior
 - Rapid concentration increase upon plume arrival
 - $PCE \ge cis-DCE > TCE > VC$

Model Calibration: Historical Data

Model Calibration: Parameters

- 54 parameters
 - 11 source
 - 7 groundwater
 - 36 decay
- Constrain number of options
 - Direct measurements
 - Plume-scale behavior
 - Fitting parameters

Model Calibration: Plume-Scale Behavior

Decreasing concentrations in source area -> Source concentration and decay

Fast breakthrough -> Low dispersion velocity profile

MW-27 (2,150 ft from source area)

Model Calibration: Fitting Parameters

Retardation

- One value for 4 constituents
- Decay rates
 - Highest in source area
 - Highest for TCE

Model Calibration: Results

Predictions from Model: Methods

- Goal = Simulate ISB in REMChlor
- Increase degradation rates in on-site ISB footprint
 - 30 /yr for each COC
 - Source to 150m downgradient
 - Starting in 2015
 - Other model inputs constant
- Examine future concentrations downgradient in model

Predictions from Model: Results

Predictions from Model: Conclusions

Model Results

- Model predicts that ISB on client property results in MCLs
 - 2031 at mid-point (MW-16)
 - 2039 at leading edge (MW-27)
- Longer than acceptable
- 80% longer than GW velocity calculations predict
 Resulting Actions
- ISB program expanded to off-site area

Post Script: What's New Since 2015

- ISB implemented full-scale in 2015
- Additional injection event 2017
- Analytical data generally supports model results

Summary and Conclusions

- Model assessed predictive results of ISB during design
- Model outcome resulted in expanded ISB footprint
- Remedy timeframe incorporated in decision documents
- ISB program ongoing

Fritz Krembs, P.E., P.G.

fkrembs@trihydro.com

QUESTIONS?

