

Identifying Linear and Branched Isomers from Standard PFAS Analysis for Source Delineation

Craig Hutchings Steve Helgen

February 14, 2019

Overview

Primary PFAS manufacturing processes

Electrochemical fluorination

Telomerization

 Differences in resulting chemistry

- Homologs
- Isomers
- Consumer products
- Utility of isomer data for source differentiation

Homologs

Same functional group, different carbon chain lengths

Manufacturing Processes

		Primary Homolog	
Process	Date Range	Odd / Even	Carbon Length
ECF	1960s to 2002	Even	8
Telomerization			
Telomer lodide	1970s to Present	Even	8
Telomer Olefin	riosont	Odd	9

After Prevedouros et al. (2006)

Electrochemical Fluorination

Perfluorooctane sulfonyl derivatives

Perfluorooctanoyl derivatives

Adapted from Buck et al. (2011)

Telomerization

Consumer Products

Consumer Products

Guo et al. (2009).

Consumer Products

Guo et al. (2009).

Formulations Change Over Time

^{*} PFSAs analyzed in 2009 sample only. ** FTOHs analyzed in 2011 sample only.

integral

What We See in the Environment

- Some industrial point sources may match a process or product
- More often a mix of processes or products
 - Landfills, AFFF sites
- Homolog profiles have been used to differentiate sources
 - Unmixing
 - Hierarchical clustering

Isomers

 Same functional group and carbon chain length, different structure

Linear PFOA

Isopropyl-PFOA

3 methyl-PFOA

integral

Manufacturing Processes

		Primary Homolog		
Process	Date Ranges	Odd / Even	Carbon Length	Primary Isomers
ECF	1960s to 2002	Even	8	Linear / Branched
Telomerization				
Telomer Iodide	1970s to Present	Even	8	Linear
Telomer Olefin	riosent	Odd	9	Linear

After Prevedours et al. (2006)

Side Note

 Starting with a branched telogen it is possible to use telomerization to produce branched isomers.

 However, commercial production of branched isomers by telomerization has not been

confirmed.

Using Isomer Data

- Isomer profiles have been used for source evaluation
 - Benskin (2011) sediments
 - Absence of branched isomers suggests telomerization source
 - Brick Township / Metedeconk River Watershed
 - Branched PFOA isomers suggest ECF source

Isomer Data Evaluation

Example Sites

- Two industrial sites
- Similar concentrations

Linear and Branched Isomers Determined by Chromatography

Only Linear PFAS

Linear and Branched PFAS

Isomer Data

Take Aways

- ECF generally produced even carbon chains with branched isomers
- Telomerization can produce even or odd carbon chains
 - Primarily linear isomers
 - Branched isomers only possible if branched telogen used - no confirmed commercial use
- Isomer data can be useful in differentiating sources

Craig Hutchings Consultant

chutchings@integral-corp.com 360.705.3534, ext. 417

Steve Helgen Principal

shelgen@integral-corp.com 720.465.3319

References

- Benskin, J.P., V. Phillips, V.L. St. Louis, and J.W. Martin. 2011. Source elucidation of perfluorinated carboxylic acids in remote alpine lake sediment cores. *Environ. Sci. Technol.* 45(17):7188-7194.
- Brick Township Municipal Utilities Authority. 2015. Identification of Perfluoroalkyl Compounds (PFCs) in the Metedeconk River Watershed, Final Report. NJDEP Grant Contract No. SR11-016. April.
- Buck, R.C., J. Franklin, U. Berger, J.M. Conder, I.T. Cousins, P. de Voogt, A.A. Jensen, K. Kannan, S.A. Mabury, and S.P.J. van Leeuwen. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. *IEAM* 7(4):513-541.
- Guo, Z., X. Liu, K.A. Krebs, and N.F. Roache. 2009. Perfluorocarboxylic acid content in 116 articles of commerce. U.S. Environmental Protection Agency, Research Triangle Park, NC.
- Liu, X., Z. Guo, K.A. Krebs, R.H. Pope, and N.F. Roache. 2012. Trends of perfluoroalkyl acid content in articles of commerce—Market monitoring from 2007 through 2011. U.S. Environmental Protection Agency and ARCADIS.
- Prevedouros, K., I.T. Cousins, R.C. Buck, and S.H. Korzeniowski. 2006. Sources, fate and transport of perfluorocarboxylates. *Environ. Sci. Technol.* 40(1):32-44.