

Development of a Custom Carbon Amendment Strategy using Biochar for a Mercury-contaminated River

Cameron Dixon, PE

Outline

- Background
- ConceptualSite Model
- What is Biochar
- Why Biochar
- Implementation
- Challenges
- Results

Background - Timeline

Conceptual Site Model

Conceptual Site Model – Storm Event

Conceptual Site Model – Storm Event with Cap

Conceptual Site Model – Storm Event with Amended Cap

Evaluation of BioChar as Remedial Option

Technology Evaluation

8

- BioChar
- Activated Carbon
- Thiol SAMMS
- Polymeric Adsorption Resins

Laboratory **Evaluation**

- Column Studies
- Leachability Testing
- Ecological Impact

Field Pilots

- Pond
- Floodplain
- Surface Water

P. Liu, C. J. Ptacek, D. W. Blowes, Y. Z. Finfrock, R. A. Gordon (2017) <u>Stabilization of mercury in sediment by using biochars under reducing conditions.</u> Journal of Hazardous Materials 325:120-128

Remedy Implementation

Laboratory Testing

Dr. Robert Brent

Biochar Treatment and Bioaccumulation

Dr. William Clements

Biochar impacts on **Benthic** Macroinvertebrates

Dr. Danny Reible

Mercury Leaching from **Banks**

Dr. Carol Ptacek

Biochar Treatment Efficacy

Dr. Cynthia Gilmour

Partitioning to pore water and bioaccumulation in aquatic o oligochaete

Dr. Michael Newman

Efficiency of Sediment Amendments

Biochar affect on Bioaccumulation in aquatic invertebrate and in earthworms

2009: Pilot Bank No Biochar

2016: Constitution Park 6" 50% Biochar Layer

2017: City Shops6" 15% Biochar Layer

2018: Allied Ready Mix 3" 30% Biochar layer w/ AC RCM

2019: Shiloh Baptist Church 3" 30% Biochar layer to base of slope

2020: North Park 3" 30% Biochar layer to base of slope Or Biochar Bonded to Aggregate

Figure 1. Configuration of PAC-coated particle.

AquaGate+PAC serves as a delivery mechanism to reliably place reactive capping materials into aquatic environments.

Mixing

Placement

Cover and Restoration

Challenges

Post Remediation Results

- Decreasing IHg and MeHg concentrations in near bank sediment
- Bulk sediment IHg concentrations similar to water column particulates
- No reduction in concentrations at non-remediated banks
- Pore water IHg concentrations decreasing after initial post remediation 'bump' at Constitution Park

Constitution Park

Constitution Park

City Shops

Thank You!

T 123-456-7890 E fname.lname@aecom.com