

A Case Study Involving **California's Latest Sediment** Tool: Human Health Sediment Quality Objective **Tier III Assessment** Presented by Elizabeth Lamoureux (Anchor QEA) Shelly Anghera (Latitude) Wendy Hovel (Geosyntec) Andrew Jirik, Kathryn Curtis (Port of Los Angeles) Matthew Arms, James Vernon (Port of Long Beach)

Background: California SQOs

- 2009: Water Quality Control Plan for Enclosed Bays and Estuaries
 - Narrative Human Health Sediment Quality Objective (SQO)
- 2012: The TMDL for Greater Los Angeles and Long Beach Harbor Waters identified fish consumption impairments for PCB and DDX
 - Included SQO assessment compliance option
- 2018: Amendments to the 2009 Water Quality Control Plan
 - Provides process for Human Health SQO assessment

Background – SQO Indirect Effects Assessment

- Three tiers of SQO Human Health Assessment proposed
- All tiers involve integration of: (1) chemical exposure; and (2) site sediment linkage

Tier	Description	Sediment Linkage		
I	Screening, conservative assumptions	BSAF based on generic bioaccumulation model		
II	IISite assessment, more specific conditionsSome site-specific pa probabilistic fram			
	Refined assessment, more complex situations	Site-specific, calibrated model, deterministic framework		

The Challenges and Benefits of a Tier III Assessment

- Challenges
 - No policy written
 - Requires conversion of sediment contribution (determined by modeling) to Tier II categories
 - Cost
- Benefits
 - No policy written
 - The Ports asked by the California Water Quality Control Board to apply Tier III as the first case study prior to completion of State Policy

Tier III Assessment – Steps

- Develop a linked hydrodynamic, sediment-transport, fate (WRAP)-bioaccumulation model for the Greater Harbor Waters (including CSM, data collection, fish-tracking study, model calibration)
 - Peer review
- 2. Determine method for measuring sediment linkage
 - Get regulatory approval
 - Ongoing collaboration with State Water Board
- 3. Combine sediment linkage with chemical exposure data

Tier III Assessment Step 1 – Develop a Linked WRAP-Bioaccumulation Model

Bioaccumulation Model Framework

- AQFDCHN
 - Bioenergetic, mechanistic, dynamic modeling framework
 - Developed by Thomann and Connolly in 1984
 - Accounts for complex food web structure and fish movement, in addition to site-specific growth rates and lipid contents

Representative Harbor Food Web

Notes:

White croaker picture from Larry Allen

California halibut picture from http://www.selfridges.com/content/project-ocean-fish-guide

A Case Study Involving California's Latest Sediment Tool: Human Health Sediment Quality Objective Tier III Assessment

Fish Movement Zones

- Fish subpopulations developed by grouping tagged fish with similar movement patterns
- Other considerations
 - Areas targeted for future management actions
 - Physical characteristics: depth, grain size, and TOC
 - Biological characteristics: benthic infaunal abundance

Calibration: Example – White Croaker PCBs

A Case Study Involving California's Latest Sediment Tool: Human Health Sediment Quality Objective Tier III Assessment

Peer Review

- Panel included representation from public, private, and academic sectors
- Bioaccumulation model found to accurately simulate linkage between sediment, water, and fish PCB and DDX concentrations
- Peer review concluded the linked WRAPbioaccumulation model would be an acceptable tool for evaluating sediment linkage
 - Following multiple interactions between panel, modelers, Ports, and regulators

Tier III Assessment Step 2 – Establish Approach for Sediment Linkage

Sediment Contribution Determination

Approach to Categorizing Results

- Three sediment contribution estimates for each zone: best estimate, upper and lower bound
- Distribution of model- estimated sediment linkages compiled for each zone and model species
- Categorize data into existing categories in SQO framework based on comparison to 50% sediment contribution threshold

```
75%ile <50% = Very Low
50%ile <50% = Low
50%ile >50% = Moderate
25%ile >50% = High
```

Market Basket Sediment Linkage – PCBs in Fish Movement Zones

Tier III Assessment

Step 3 – Combine sediment linkage with chemical exposure

A Case Study Involving California's Latest Sediment Tool: Human Health Sediment Quality Objective Tier III Assessment

Integration with SQO Process – Final Indirect Effects Site Assessment

• Final Site Assessment based on both sediment contribution and consumption risk

		Consumption Risk				
		Very Low	Low	Moderate	High	Very High
	Very Low	Unimpacted	Unimpacted	Likely Unimpacted	Likely Unimpacted	Likely Unimpacted
Study Area	Low	Unimpacted	Unimpacted	Likely Unimpacted	Possibly Impacted	Likely Impacted
Contribution	Moderate	Unimpacted	Likely Unimpacted	Likely Impacted	Likely Impacted	Clearly Impacted
	High	Unimpacted	Likely Unimpacted	Likely Impacted	Clearly Impacted	Clearly Impacted

Chemical Exposure Draft Results – PCBs

	Chemical Exposure Categories	 < FCG (<3.6 μg/kg); Very Low < ATL3 (<21 μg/kg); Low < ATL2 (<42 μg/kg); Moderate < ATL1 (<120 μg/kg); High > ATL1 (>120 μg/kg); Very High 	Market Basket PCBs (µg/kg)	
C	onsolida	ated Slip	167.1	
L	A Inner	Harbor	91.6	
Fi	sh Harbor 143.8		143.8	
S	eaplane	Lagoon	57.4	
L	LA Outer Harbor		27.5	
LI	LB Inner Harbor – North		53.2	
LI	B Inner	Harbor – South	76.9	
LI	LB Outer Harbor		34.8	
Ea	Eastern San Pedro Bay		79.4	

Notes:

Only fillet (croaker and halibut) or estimated fillet (surfperches) used Fish data were collected between 2002 and 2016 ATL3/2/1: Advisory tissue levels 3/2/1 based on consumption of 3/2/1 meals per week FCG: Fish Contaminant Goal

Draft Integrated Tier III Site Assessment Results: Market Basket

Fish Movement Zone	Chemical Exposure	Site Sediment Linkage	Site Assessment
Consolidated Slip	Very High	Low	Likely Impacted
LA Inner Harbor	High	Very Low	Likely Unimpacted
Fish Harbor	Very High	High	Clearly Impacted
Seaplane Lagoon	High	Very Low	Likely Unimpacted
LA Outer Harbor	Moderate	Very Low	Likely Unimpacted
LB Inner Harbor – North	High	Very Low	Likely Unimpacted
LB Inner Harbor – South	High	Very Low	Likely Unimpacted
LB Outer Harbor	Moderate	Very Low	Likely Unimpacted
Eastern San Pedro Bay	High	Moderate	Likely Impacted

		с	Chemical Exposure				
		Very Low				Very High	
kage	Very	UI	UI	LU	LU	LU	
ent Lin		UI	UI	LU	PI	LI	
edime		UI	LU	ш	LI	CI	
Site S	High	UI	LU	LI	СІ	CI	

Summary of Tier III Assessment Case Study: Greater Harbor Waters

- Successful model development and peer review
- Good collaboration with regulators
- Process for determining sediment linkage established
- First Tier III assessment
- Case study contributed to development of new policy
- Assessment targets sediments based on fish exposure

Questions/Discussion?