

An Updated Site Conceptual Model for **Oleophilic Bio-Barriers**

Battelle Sediments Conference

Laura Tochko, Jacobs Tom Sale, Olivia Bojan, and Maria Irianni Renno, Colorado State University February 2019

Contaminant Hydrology

Agenda

- 1. Problem statement
- 2. OBB overview
- 3. Site history
- 4. Site sampling
- 5. Sampling results
- 6. Conclusions and future work

The Problem: Sheens

- Sheens form at Groundwater/Surface water Interfaces (GSIs) due to seeps, ebullition, and erosion/scour
- Challenges include permitting and access
- Current remedies have limitations
- OBB is designed to be a low-cost, sustainable sheen solution

Customize Layers for Site

Site History

- Former petroleum storage facility on tidal river in the northeast US
- OBB installed November 2013
- No sheens observed
- Expanded/sampled October 2017

Sample Locations

Pilot study (Chalfant, 2015)

No fluorescence found on geocomposite surface

Orders of Magnitude Reduction in DRO Concentrations Across Layers

Units: mg DRO / kg dry weight sample GC/FID quantification limits: 2 mg/kg

Sheens and Odor in the Lower Sediment

Oxygenated Compounds Present in Lower Sediment

5%

5%

4%

2%

3%

6%

3%

5%

7%

(c) Geocomposite

Colorado State 6%

5%

% Oxygenated = Area of oxygenated peaks / Total area GC/MS quantification limit: 6 mg/kg

Hypothesis 1: Oxygenated Compounds Degrade

Structural cover

Clean sand fill

OBB Geocomposite

Geotextile

Coarse sediment

Fine sediment

Not to scale

Hypothesis 2: Oxygenated Compounds Dissolve

Structural cover

Coarse sediment

Fine sediment

13

High Number of Bacteria on Geocomposite

Units: number of bacterial 16S transcripts / g sample wet weight

Detailed Microbial Analysis

- Geocomposite and Upper Sediment showed similar levels of aerobes and nitrate reducers
- Lower Sediment showed less aerobes and nitrate reducers and more sulfate reducers and fermenters

Conclusions

- Natural system have large assimilation capacity
- Treatment should focus on enhancing, versus compromising, natural attenuations processes at GSIs
- OBB layers provide a complementary contingency for periods of high loading and/or low degradation

Future Work

- Adapt OBB for wider-range of conditions including nontidal
- Explore role of iron at sites with petroleum sheens
- Develop internet-connected monitoring systems to track parameters such as ORP, temperature, and water levels

Acknowledgements

March 4, 2019

Thank you! Questions?

OBB poster C6.44 Shoreline Remediation of Petroleum Hydrocarbons Using Oleophilic Biobarrier for Sheen Control on the Portland Harbor Superfund Site

March 4, 2019