Quantitative Methods for Allocating Multiple Contaminants in Sediments

Kurt Herman, M.Eng., P.G. Caroline B. Tuit, Ph.D. Manu Sharma, M.S., P.E. Jessie M. Kneeland, Ph.D.

February 2019
Battelle Sediments Conference

Many Urban Sediment Sites Have Multiple Contaminants

PAHS Fluoranthene

Metals Copper

Complex Sediment Sites Are Often Addressed through CERCLA

- Cost recovery mechanisms (private parties and US EPA) for potentially responsible parties (PRPs)
- Joint and several liability provision of CERCLA brings many PRPs to the table
- Often involves costly litigation or dispute resolution proceedings
- Recurring issues:
 - Forensically isolating PRP contributions
 - Evaluating relative contribution of different contaminants

Quantitative Approaches

- Stand-alone cost analysis
- Incremental cost analysis
- Relative contribution analysis

Example Site

- PCBs limited to surface sediments (0-2 ft)
 - Mean concentration = 10 mg/kg
 - PRG = 1 mg/kg
- PAHs present in surface (0-2 ft) and deep sediments (2-10 ft)
 - Mean concentration = 1,000 mg/kg
 - PRG = 10 mg/kg
- \$100M Remedy dredge all PCB and PAH impacts and restore
 - \$1M for PCB sampling and TSCA compliance
 - \$1M for mobilization/demobilization

Stand-Alone Cost (SAC) Analysis

- Calculate the cost to address each contaminant in the absence of the other contaminants (each contaminant "stands alone")
- Normalize based on actual costs

Option 1: Constrained to Selected Dredging Remedy

		PCBs	PAHs	Total
SAC (\$M)	Remedy	5.0	98.0	103.0
	Mob.	0.5	1.0	1.5
	Total	5.5	99.0	104.5
%		5.3	94.7	100.0

Option 2:
Not Constrained to Selected Dredging Remedy

		PCBs (Cap)	PAHs (Dredge)	Total
	Remedy	2.5	98.0	100.5
SAC (\$M)	Mob.	0.2	1.0	1.2
	Total	2.7	99.0	101.7
%		2.7	97.3	100.0

Incremental Cost (IC) Analysis

- Identify costs associated with risk/remedy driver (e.g., "Principal Threat Waste") then identify incremental costs associated with other individual contaminants
- Can be sensitive to order because common costs (e.g., mob/demob)
 are assigned to the driver

		PAH IC (PAH 1st)	PCB IC (PCB 2 nd)
	Remedy	98 – full remedy; no TSCA compliance, no PCB sampling	1 - TSCA compliance, PCB sampling
IC (\$M)	Mob.	1	0
	Total	99	1
%		99	1

Incremental Cost (IC) Analysis: Shapley Value

- When the risk/remedy driver is unclear or subject to debate, the Shapley Value can be used
- Shapley Value concept used in Game Theory
 - Consider all possible orders for calculating incremental costs (possible outcomes), assign occurrence probabilities to each possible outcome, then calculate expected value for each outcome

	Possible Outcome - Cost (\$M)	Occurrence Probability (%)	Expected Value (\$M)
PAHs 1st, PCBs 2nd	1	80	0.8
PCBs 1st, PAHs 2nd	5.5 (includes mob. cost; same as SAC Option 1)	20	1.1
Total Expected Value (PCBs)			1.9

Relative Contribution Analysis

- For co-mingled contaminants, relative contribution analysis is often used
- Surrogates used for relative contribution to cost, e.g., risk, volume, mass
 - Surrogates should be grounded in cost causation principles
- Consider different ways to treat the data geographically:
 - Average over whole remedy area
 - Sub-divide into segments/depth
 - Thiessen polygons
 - Individual samples or stations

Untangling Relative Risk Contribution for each Ecological Receptor Can Be a Challenge

a Includes exposure media with at least one complete exposure pathway evaluated in the BERA.

How Should Receptors/Pathways be Weighed Against Each Other?

Relative Contribution Analysis: PRG Approach

- Site-specific risk-based cleanup goals, e.g., Preliminary Remediation Goals (PRGs), can be used to assign relative contribution
- PRGs are established for specific contaminants and are tied to cost causation
- In the absence of site-specific PRGs, PRGs established at other sites can be used (central tendency or more sophisticated probabilistic approach) – where comparable

Relative Contribution Analysis: PRG Approach Example

1. Calulate PRG ratios:

$$X_{PRG} = [X]/PRG_{X'}$$

Cample	PRG Ratios		
Sample	tPAH _{PRG}	tPCB _{PRG}	
1	1.6	1.8	
2	3.4	0.4	
3	2.9	-	
4	0.5	-	

2. Calculate Exceedance Frequency $(X_{\%EX})$ and Relative Exceedance Frequency $(rX_{\%EX})$: $X_{\%EX} = 100*(number of X_{PRG} > 1)/(number of X_{PRG} > 0)$

	tPAH _{PRG}	tPCB _{PRG}	Total
Exceedance Frequency, X _{66X}	75%	50%	125%
Relative Exceedance Frequency, rX _{%EX}	60%	40%	-

3. Calculate Exceedance Intensity (X_{Exln}) and Relative Exceedance Intensity (rX_{Exln}) : $X_{Fxln} = \text{Average of } X_{PRG} > 1$

	tPAH _{PRG}	tPCB _{PRG}	Total
Exceedance Intensity, X_{Exin}	2.6	1.8	4.4
Relative Exceedance Intensity, rX _{ExIn}	59%	41%	-

4. Calculate the Exceedance-Intensity Factor:

$$X_{EF} = (rX_{\%EX}) * (rX_{Exin})$$

	tPAH _{PRG}	tPCB _{PRG}	Total
Exceedance-Intensity Factor, X _{EF}	0.36	0.16	0.52
Normalized Exceedance-Intensity Factor, nX _{EF}	69%	31%	-

Conclusions

- Every site is unique but most have multiple contaminants and multiple PRPs
- Evaluate your options different approaches can yield different results

Questions?

Kurt Herman, M.Eng., P.G.

Principal

(617) 395-5568 kherman@gradientcorp.com

