Science, Application, Monitoring, and Illustrative Case Studies of Biogeochemical Remediaiton Sixth International Symposium on Bioremediation and Sustainable Environmental Technologies

May 11, 2023











## **Panel Discussion Format**

- Five panelists for the following topics:
  - -Science
  - -Design

2

- -Application
- Monitoring
- -Example Case Studies
- 100 minutes for the Panel

- Discussion is divided into two sections:
  - Each panelist gets ~10-15 minutes (~60-70 minutes)
    - -7-10 minutes to present on their topic
    - -3-5 minutes for Q&A for that topic
  - 2. Open Discussion (~30-40 minutes)
    - -Questions from the audience









#### Science







#### Prof. Paul G. Tratnyek (Oregon Health & Science University)

- Aquatic redox chemistry
- Environmental fate and remediation/treatment of contaminants
- Contaminant reduction by zerovalent iron (ZVI, nZVI, PRBs)
- In situ chemical reduction (ISCR) and oxidation (ISCO)

#### Alan Seech, Ph.D.

- M.Sc. (Soil Chemistry) and Ph.D. (Environmental Microbiology), University of Guelph, Canada
- Focus on remediation of soil and groundwater contaminated with chlorinated pesticides and heavy metals
- First of five US patents on combination of biodegradable organic carbon with ZVI issued in 1995

#### **Eric Moskal**

- Technical Expert |Cascade Remediation
- Expertise in pneumatic and hydraulic emplacement of reagents

Design

#### Application

### Monitoring



#### Dora Taggert

CEO | Microbial Insights Biomedical Engineering degree Vanderbilt University

#### Daniel Leigh, P.G., CH.G.

Illustrative Case Studies

Δ



#### Technology Leader for Bioremediation and Chemical Reduction

 Over 30 years of experience designing, bench testing, and implementing remediation technologies









Fundamental Science behind Biogeochemical Remediation

Professor Paul Tratynek Oregon Health & Science University











### **Biogeochemical Remediation** And variations thereof



 ISCR (Seech): In situ chemical reduction



- BMAD (Scherer): Biologically Mediated Abiotic Degradation
- ISRM (Fruchter): In situ redox manipulation
- BiRD (Kennedy): Biogeochemical Reductive Dechlorination
- ISBGT (Evans):
   In Situ Biogeochemical Transformation
- BGC (Leigh): Biogeochemical Remediation
- (A)(M)NA (Wilson) (Abiotic) (Monitored) Natural Attenuation

ERD (EVO folks) Enhand Reductive Dechlorination ISB (Example Science In Situ Bioremediation



## **Biogeochemical Remediation**

Major processes with context

- Microbiology (e.g., DIRBs) drives formation of reducing mineral phases directly (1,3) and indirectly (2).
- Contaminants can be reduced by Microbes (6), 1Minerals (4), and/or 2Minerals (e.g. RMIs)(5).
- **Hypothesis**: ANA of CEs is mostly by RMIs (⑤), not 1FeO/S (④).
- Corollaries: Creating and sustaining RMIs may be altered by Natural Hydrobiogeochemical (HBGC) fluctuations or Active-Passive Transitions (APTs).



7





**H&SCIENCE** 

Paul Tratnyek

# **Reactive Mineral (Intermediate) Phases**

# Evidence for reactivity

- RMI Hypothesis:
  - Active precipitation leads to
  - Metastable phases that serve as
  - Reactive mineral intermediates (RMIs)
  - Which are the main cause of ANA
- RMI Characteristics:
  - Authigenic (formed in situ); transient when sampled for ex situ analysis
  - Life-time and concentration determined by the balance of source and sink processes.
  - Low steady-state concentration with high turnover can give significant contaminant degradation.







#### Modeling the Kinetics of Hydrogen Formation by Zerovalent Iron: Effects of Sulfidation on Micro- and Nano-Scale Particles

Hejie Qin,<sup>†,‡</sup> Xiaohong Guan,<sup>⊕,†,‡</sup><sup>©</sup> Joel Z. Bandstra,<sup>8</sup> Richard L. Johnson,<sup>||</sup> and Paul G. Tratnyek<sup>⊕,||</sup><sup>©</sup>



Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates

clay miner

Fe(II)

orecipita

precipitate Fe(II) content

H&SCIENCE

James Entwistle,<sup>†</sup> Drew E. Latta,<sup>‡</sup> Michelle M. Scherer,<sup>‡</sup> and Anke Neumann<sup> $\phi$ ,<sup>†</sup></sup>

CE or TCE

acetylene, ethene, ethane

tructura

Fe(II) in

clay

nineral



Home > Program Areas > Environmental Restoration > Contaminated Groundwater > Persistent Contamination > ER-2621 Project Overview

Field Assessment of Abiotic Attenuation Rates using Chemical Reactivity Probes and Cryogenic Core Collection





## **Reactive Mineral (Intermediate) Phases** Evidence for occurrence and distribution



Check for update

**REVIEW ARTICLE** 

https://doi.org/10.1038/s41561-021-00742-z

Journal of Hazardous Materials 420 (2021) 126600

Contents lists available at ScienceDirect



Journal of Hazardous Materials



nature

geoscience

journal homepage: www.elsevier.com/locate/jhazmat

Roles of reactive iron mineral coatings in natural attenuation in redox transition zones preserved from a site with historical contamination

Han Hua<sup>a</sup>, Xin Yin<sup>a</sup>, Donna Fennell<sup>b</sup>, James A. Dyer<sup>c</sup>, Richard Landis<sup>d</sup>, Scott A. Morgan<sup>e</sup>, Lisa Axe<sup>f,\*</sup>



#### A biogeochemical-hydrological framework for the role of redox-active compounds in aquatic systems

2021, 14(5): 264-272

S. Peiffer<sup>©</sup><sup>1⊠</sup>, A. Kappler<sup>©</sup><sup>2</sup>, S. B. Haderlein<sup>®</sup><sup>3</sup>, C. Schmidt<sup>2</sup>, J. M. Byrne<sup>2</sup>, S. Kleindienst<sup>©</sup><sup>4</sup>, C. Vogt<sup>5</sup>, H. H. Richnow<sup>5</sup>, M. Obst<sup>6</sup>, L. T. Angenent<sup>7</sup>, C. Bryce<sup>®</sup><sup>2</sup>, C. McCammon<sup>®</sup><sup>8</sup> and B. Planer-Friedrich<sup>®</sup><sup>9</sup>



Dynamic processes involving the formation of RAMPs. TEM images showing the reaction between sulfide and lepidocrocite over time.





Reactive Mineral (Intermediate) Phases Mediators of BiRD, ISBGT, BMAD, etc.

#### Iron Sulfide Mediated Transformation





CHO Generic electron donor organic compounds Iron-reducing bacterium Sulfate-reducing bacterium

Transport

- Chemisorption Mediated Abiotic TCE Transformation
   Reactive Mineral Formulation
   Abiotic TCE Transformation
  - Biochemical Reaction

#### Becvar, Evans, et al. (2008) AFCEE/ESTCP Workshop Report





Paul Tratnyek tratnyek.org

OHSU

**mīcrōbial**insights

## **Parallel Pathways of Reductive Degradation**

## Abiotic vs. biotic pathways

11







# **Questions?**











# Design Considerations

Dr. Alan Seech Evonik











## **Essential Components of Effective BioGeoChemical Remediation**

Adequate availability of all three is Essential (remove limiting parameters)



## **Target Conditions Generate BioGeoChemical Remediation Zone**

TOC, Sulfate, and Dissolved Iron from Aquifer and Reagents

#### ✓ pH between 6.0 and 7.5

- Outside this range DHC activity is inhibited
- pH at the lower end of this range helps to keep iron in solution
- ZVI passivation increases at higher pH as siderite↓ increases
- Above pH of 7.5 microbial sulfate reduction is sharply inhibited

#### ✓ ORP below -200 mV

- Helps to keep Fe<sup>+2</sup> in solution
- Sulfate reduction requires ORP below 150 mV
- Thermodynamics of dechlorination are better at lower ORP

#### ✓ TOC between 1,000 and 3,000 mg/L

- Adequate electron donor to support removal of  $O_2$ ,  $NO_3^{-}$ , and  $SO_4^{-2}$
- Produce enough VFA acidity to balance ZVI alkalinity and promote release of Fe<sup>+2</sup>
- ✓ Sulfate between 500 and 2,000 mg/L
- ✓ Dissolved iron of at least 100 mg/L
  - Availability of  $Fe^{+2}$  is probably the rate limiting parameter
  - Need enough to prevent sulfide toxicity by removing sulfide as  $\text{FeS}{\downarrow}$



Figures provided by P. Dennis, SiRem (top) and S. Vainberg, APTIM (bottom)





degradation

Ы





by SDC-9 consortium



| Process                                         | Results<br>&<br>Products                                                                                                          | Impact<br>on Aquifer<br>pH | Impact on<br>Aquifer<br>ORP | Impact on<br>ZVI                                                                                            | Impact on<br>Reactive<br>Minerals                                                        |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Microbial<br>Metabolism<br>of Organic<br>Carbon | <ul> <li>removes O<sub>2</sub>, NO<sub>3</sub>- and SO<sub>4</sub>-2</li> <li>produces VFAs that promote acidification</li> </ul> | Ļ                          | $\downarrow$                | <ul> <li>VFAs ↑ corrosion</li> <li>↑ Fe<sup>+2</sup> release</li> <li>↓ passivation</li> </ul>              | <ul> <li>↑ solubility of FeS<br/>and FeS<sub>2</sub></li> </ul>                          |  |  |
| Microbial<br>Sulfate<br>Reduction               | <ul> <li>produces S<sup>-2</sup>, HS<sup>-</sup></li> </ul>                                                                       | ↑ (small)                  | $\downarrow$                | <ul> <li>↑ ZVI corrosion</li> <li>↑ Fe<sup>+2</sup> release</li> <li>↑ in situ sulfidation</li> </ul>       | <ul> <li>↑ rate &amp; extent of<br/>FeS formation</li> <li>↑reactivity of FeS</li> </ul> |  |  |
| Oxidation of<br>ZVI<br>(corrosion)              | <ul> <li>produces Fe<sup>+2</sup>, e<sup>-</sup></li> <li>produces OH<sup>-</sup></li> </ul>                                      | 1                          | $\downarrow$                | <ul> <li>↑ passivation in<br/>high O<sub>2</sub> or HCO<sub>3</sub><sup>-</sup><br/>environments</li> </ul> | <ul> <li>↑ rate &amp; extent of<br/>FeS formation</li> <li>ferruginous clay</li> </ul>   |  |  |
| 16                                              | bial insights                                                                                                                     | OREGON<br>HEALTH&SCIENCE   |                             |                                                                                                             |                                                                                          |  |  |

### **Carbon Metabolism, Microbial Sulfate Reduction, and Iron Corrosion** Important Interactions



Microbiologically enhanced corrosion of iron by sulfate reducing bacteria during growth on cellulose. *K.H. Logan In: The Corrosion Handbook. H.H. Uhlig (Ed). 1946. John Wiley & Sons, NY.* 

- Cast iron pipe in wet soil
- Wrapped in cellulose (hemp) rope
- Long-lasting source of organic carbon to support removal of O<sub>2</sub>, and NO<sub>3</sub><sup>-</sup> which promotes onset of SO<sub>4</sub><sup>-2</sup> reduction
- Enhanced corrosion and release of  $\rm Fe^{+2}$
- Sulfate reducing bacteria isolated from pitted areas produce HS<sup>-</sup>
- HS<sup>-</sup> combines with Fe<sup>+2</sup> to form FeS precipitate
- Stronger negative Eh in the pitted areas
- Adequate supply of Fe<sup>+2</sup> prevents high concentration of free sulfide which can inhibit continued sulfate reduction



17







## Sulfidation increases ZVI reactivity and Longevity

"Sulfidation" ... can refer to any modification or transformation of a metal-based material by exposure to sulfur compounds of various oxidation states..."

#### In Situ Sulfidation Process:

ZVI, Fe<sup>+2</sup>, SO<sub>4</sub><sup>-2</sup>, and organic carbon (**OC**) are distributed in aquifer

ZVI reacts with water to generate OH<sup>-</sup> on surface

Sulfate is biologically reduced to sulfide (HS<sup>-</sup>)

Sulfide replaces OH<sup>-</sup> on ZVI particle surface

Fe<sup>2+</sup> (ambient, supplied or from ZVI oxidation,) combines with HS<sup>-</sup> to form FeS coating on ZVI





18









#### Visual Evidence for Establishment of Effective BioGeoChemical Conditions



#### Day 56 Monitoring

|                     | Parameter | Influent | Control | ZVZ | ELS® | GeoForm <sup>®</sup> S | Klozur <sup>®</sup> SP |
|---------------------|-----------|----------|---------|-----|------|------------------------|------------------------|
|                     | Eh (mV)   | 367      | 212     | 200 | -131 | -139                   | 226                    |
| <b>microbial</b> in | pH (s.u.) | 7.4      | 7.6     | 7.7 | 6.6  | 7.0                    | 12.7                   |



# **Questions?**











# Injection and Fracturing Considerations for Bio-Geochemical Liquid and Solid Amendments

Eric Moskal, Cascade Remediation Services

emoskal@cascade-env.com



# Site Design Strategy From an Injection Implementation Standpoint

- Understanding site geology is crucial to defining remediation approach –High-resolution site characterization (HRSC) used to build detailed CSM
- Geology dictates amendment state

   Suspended Solids (ZVI, EHC, Geoform ER, etc.)
   Dissolved or colloidal (Colloidal ZVI, EHC-Liquid, Geoform Soluble, etc.)
- Geology and selected amendments dictate emplacement methodology –Low pressure/low flow for pore volume replacement –High pressure/high flow for fracturing and solids emplacement









# What Do You Treat... Transmissive and/or Storage Zones?



# **DPT Direct Push Liquid and Solid Tooling**



# Transmissive (High K) Strategy: Liquids with Traditional or Automated Injection



*Transmissive -High K – Overlap Low K and Target Through Pressure Control* 

# Evolution of Injection For Liquid Amendments

- Few developments of injection technology since its inception in the mid-1990's beyond...
  - Ball valves
  - Manually read flow meters and pressure gauges
- Sensitivity to injection pressures and flows by our professional community and subcontractors



# **DPT Inner-Hose and Screen Tooling**



## What Is Automated Injection?

Automatic control of ball valves from digital pressure and flow readings in real-















# Storage (Low K) Strategy: Solids Through Hydraulic Fracturing





*Target with Higher Pressure Activated Discreet Tooling.* 

# Transmissive (High K) and Storage (Low K) Strategy: Liquids/Solids





*Target with Higher Pressure Activated Discreet Tooling.* 

# Storage (Low K) Strategy: Solids Through Pneumatic Fracturing

- 1. Initiate Fractures With High Pressure Nitrogen.
- 2. Switch to Hydraulic Injection of Amendments into Fractures.
- 3. Implemented through Straddle Packers in Open Boreholes, through Sonic Casing, and DPT.
- 4. Creates new fractures in overburden.

**microbial**insights

5. Enhances existing fractures in bedrock.







# Thank You!

# CASCADE

Eric Moskal

**Cascade Remediation Services** 

emoskal@cascade-env.com



# Monitoring for Biogeochemistries

Min-Trap<sup>®</sup>



Dora Taggert Microbial Insights

microbialinsights







#### Groundwater Chemistry

Monitoring to assess the status of subsurface biogeochemical processes



#### Environmental parameters

--factors affecting biological activity and geochemistry

## Electrical Conductivity (EC)

- pH
- Total Dissolved Solids (TDS)
- Temperature
- Alkalinity

#### **Electron donors**

--potential for sustained biological reduction

- Total Organic Carbon (TOC)
- Volatile Fatty Acids (VFAs)

#### **Groundwater Chemistry**

#### Monitoring to assess the status of subsurface biogeochemical processes



#### Redox sensitive parameters ---indicators of dominant terminal electron accepting processes

- DO
- ORP
- Fe<sup>+2</sup>
- SO<sub>4</sub>-2
- NO<sub>3</sub>-
- Dissolved methane
- Dissolved hydrogen
- Sulfide, bisulfide

#### Contaminants and biodegradation products

- ---biotic vs. abiotic transformations
- Daughter products
- Ethene, ethane, acetylene
- CSIA

### **Sediment Geochemistry**

#### Monitoring to assess the status of subsurface biogeochemical processes



#### Indicators of active mineral species

- · Acid volatile sulfides
- Magnetic susceptibility
- Bioavailable iron
- Humic acids (electron shuttles)
- Specific surface area
- Total Organic Carbon (TOC)
- Iron mineral speciation
  - SEM
  - X-ray diffraction

### **Sediment Geochemistry**

Monitoring to assess the status of subsurface biogeochemical processes



#### Challenges

Minerals involved in biogeochemical transformations are labile

 Standards for sampling and preservation of anaerobic conditions not well established

### Site heterogeneity

Where do you core to get representative samples?

Multiple processes ongoing that are likely spatially separated



Monitoring the bacterial populations of groundwater or sediments





## **QuantArray-BGC gene targets**





## **QuantArray-BGC gene targets**





## Min-Trap<sup>®</sup>





mi

# **Questions?**











Biogeochemically Enhanced Treatment of Chlorinated Organics and Metals Case Studies

**Dan Leigh** 

Battelle Bioremediation Symposium, Austin Texas May 11, 2023

#### Iron-Sulfide Minerals Occur in Several Forms Scanning Electron Microscopy (SEM) Images



Framboidal Pyrite (FeS<sub>2</sub>)









## **Mintrap<sup>™</sup> samples from** EHC<sup>®</sup> and GeoForm<sup>™</sup> ER Application



Ulrich, S., Martin Tilton, J., Justicia-Leon, S., Liles, D., Prigge, R., Carter, E., Divine, C., Taggart, D., & Clark, K. (2021). *Laboratory and initial field testing of the Min-Trap™ for tracking reactive iron sulfide mineral formation during in situ remediation. Remediation. 1– 14*. https://doi.org/10.1002/rem.21681

#### **SEM-EDS Results Following GeoForm<sup>™</sup> ER Application** Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) **AMIBA Results** 4302 - 65535 AVS (FeS) CrES (FeS<sub>2</sub>) SK BSE 33 51% 49% BSE **Co-located Iron and Sulfur** 100 µm 25 µm SE EDS Location map (BSE – Backscatter Electrons) (Identifies Elements on Surface) (SE – Secondary Electrons – Show Morphology) BSE Full scale counts: 1180 14161agu771(7)\_pt1 Fe K 16 Sulfu 1400 -1200 -1000 -**EDS Spectra Location 1** 800 -X-ray overlay map 600 -400red = Si, 200 -25 µm keV

#### Case Study: Combined ISCR + BGCR for Treatment of High CE Concentration

GeoForm<sup>®</sup> Extended Release Increases EHC<sup>®</sup> Degradation Rates



Results are similar with or without bioaugmentation.



47





**Batch Test Results** 

#### OREGON Days HEALTH&SCIENCE



## **Confirming Reagent Distribution Geoform® ER**





48







#### **Case Study: BGCR Treatment of Mixed Chlorinated Organics** GeoForm<sup>®</sup> ER Treats Mixed CEs, CA and CMs



### Not all contaminant reduction is degradation



#### **Case Study: BGCR Treatment of Mixed Chlorinated Organics** GeoForm<sup>®</sup> ER Treats Mixed CEs, CA and CMs



## **Degradation of Chlorinated Ethanes**

#### **Geoform**<sup>®</sup> **ER** Application



**microbial**insights

## **Degradation of Combined Chlorinated Ethenes and Ethanes**

**Geoform**<sup>®</sup> **Soluble Application** 











# **Questions?**











## **Open discussion**

- Please come to a microphone
- Specify which speaker (or the entire panel) you are directing your question
- Clearly state your question



55







# Science, Application, Monitoring, and Illustrative Case Studies of Biogeochemical Remediation



Brant Smith, P.E., Ph.D (Evonik) -- Moderator

Paul G. Tratnyek, Ph.D. (Oregon Health & Science University)

Alan Seech, Ph.D. (Evonik)

**Dora Taggart** (Microbial Insights)

Dan Leigh, PG (Evonik)

Eric Moskal (Cascade)









## **Issues for Discussion**

- 1. Does it matter if Reactive Minerals (RMIs) are formed biotically or abiotically?
- 2. RMIs might have high reactivity, but isn't their *capacity* necessarily low?
- 3. Will there ever be practical ways to directly assay for RMIs in situ?
- 4. Can abiotic natural attention be significant in the absences of sulfides (i.e., by iron alone)?
- 5. More

- 6. More
- 7. More
- 8. Where should research be focused to improve BGC?









## Reactive Mineral (Intermediate) Phases Mediator Models in General





## Reactive Mineral (Intermediate) Phases Evaluating candidate phases

Iron Mineral Thermodynamic Database

- $\square$  Compiled and compared  $\Delta G_f$  data for phases
- $\Box$  Calculate  $\Delta G_{rxn}$  (standard and formal)
- Open access at https://zenodo.org



Paul Tratnyel tratnyek.org

OpenAIRE

💿 Hudson, Jeffrey M.; 💿 Latta, Drew; 💿 Pavitt, Ania S.; 💿 Lan, Ying; 💿 Scherer, Michelle M.; 💿 Tratnyek, Paul G.

Database of free energies of formation for iron minerals and associated aqueous species, which are used in a tableu style spreadsheet to calculate free energies of redox reactions involving iron

| Redox Couple                     | Half Reaction                               | ΔGrxn    | E0 (V) | pe0    | Eh     | pe     | n of e- | Red1        | [Red1]   | R1 Stoich | Red2 | [Red2]   | R2 Stoich | Red3 |
|----------------------------------|---------------------------------------------|----------|--------|--------|--------|--------|---------|-------------|----------|-----------|------|----------|-----------|------|
| Fe(III) Oxides -> Aqueous Fe(II) |                                             |          |        |        |        |        |         |             |          |           |      |          |           |      |
| α-Fe2O3/Fe2+                     | α-Fe2O3(s) + 6 H+ + 2 e> 2 Fe2+ + 3 H2O     | -148.231 | 0.768  | 12.98  | -0.474 | -8.02  | 2       | Fe2+        | 1.00E-03 | 2         | H2O  | 1        | 3         | #N/A |
| α-FeOOH/Fe2+                     | α-FeOOH + 3 H+ + e> Fe2+ + 2 H2O            | -76.304  | 0.791  | 13.37  | -0.452 | -7.63  | 1       | Fe2+        | 1.00E-03 | 1         | H2O  | 1        | 2         | #N/A |
| γ-FeOOH/Fe2+                     | γ-FeOOH + 3 H+ + e> Fe2+ + 2 H2O            | -84.793  | 0.879  | 14.85  | -0.364 | -6.15  | 1       | Fe2+        | 1.00E-03 | 1         | H2O  | 1        | 2         | #N/A |
| Fe3O4/Fe2+                       | Fe3O4(s) + 8 H+ +2e> 3 Fe2+ + 4 H2O         | -207.621 | 1.076  | 18.18  | -0.551 | -9.32  | 2       | Fe2+        | 1.00E-03 | 3         | H2O  | 1        | 4         | #N/A |
| γ-Fe2O3/Fe2+                     | γ-Fe2O3(s) + 6 H+ + 2 e> 2 Fe2+ + 3 H2O     | -168.592 | 0.874  | 14.77  | -0.458 | -7.73  | 2       | Fe2+        | 1.00E-03 | 1         | H2O  | 1        | 3         | #N/A |
| Fe(OH)3/Fe2+                     | Fe(OH)3(s2L) + 3 H+ + e> Fe2+ + 3 H2O       | -93.656  | 0.971  | 16.41  | -0.272 | -4.59  | 1       | Fe2+        | 1.00E-03 | 1         | H2O  | 1        | 3         | #N/A |
| Fe(III) Aqueous Complex -> Fe    | II) Aqueous Complex                         |          |        |        |        |        |         |             |          |           |      |          |           |      |
| Fe3+/Fe2+                        | Fe3+ + e> Fe2+                              | -74.250  | 0.770  | 13.01  | 0.533  | 9.01   | 1       | Fe2+        | 1.00E-03 | 1         | #N/A | 1        | 1         | #N/A |
| Fe(OH)2+ / Fe2+                  | Fe(OH)2+ + 2 H+ + e> Fe2+ + 2 H2O           | -106.614 | 1.105  | 18.68  | 0.158  | 2.68   | 1       | Fe2+        | 1.00E-03 | 1         | H2O  | 1        | 2         | #N/A |
| Fe(OH)2 +/Fe(OH)2 (aq)           | Fe(OH)2 + + e> Fe(OH)2                      | 2.490    | -0.026 | -0.44  | -0.026 | -0.44  | 1       | Fe(OH)2(aq) | 1.00E-03 | 1         | #N/A | 1        | 1         | #N/A |
| Fe(III) species -> Magnetite     |                                             |          |        |        |        |        |         |             |          |           |      |          |           |      |
| α-Fe2O3/Fe3O4                    | 3 α-Fe2O3(s) + 2 H+ + 2 e> 2 Fe3O4(s) + H2O | -29.451  | 0.153  | 2.58   | -0.321 | -5.42  | 2       | Fe3O4(s)    | 1        | 2         | H2O  | 1        | 1         | #N/A |
| α-FeOOH/Fe3O4                    | 3 α-FeOOH + H+ + e> Fe3O4 + 2 H2O           | -21.291  | 0.221  | 3.73   | -0.253 | -4.27  | 1       | Fe3O4(s)    | 1        | 1         | H2O  | 1        | 2         | #N/A |
| α-FeOOH/Fe3O4                    | 3 α-FeOOH + e> Fe3O4 + OH- + H2O            | 58.629   | -0.608 | -10.27 | 0.102  | 1.73   | 1       | Fe3O4(s)    | 1        | 1         | OH-  | 1.00E-06 | 2         | H2O  |
| γ-FeOOH/Fe3O4                    | 3 γ-FeOOH + H+ + e> Fe3O4 + 2 H2O           | -21.291  | 0.221  | 3.73   | -0.253 | -4.27  | 1       | Fe3O4(s)    | 1        | 1         | H2O  | 1        | 1         | #N/A |
| γ-Fe2O3/Fe3O4                    | 3 γ-Fe2O3(s) + 2 H+ + 2 e> 2 Fe3O4(s) + H2O | -90.534  | 0.469  | 7.93   | -0.241 | -4.07  | 2       | Fe3O4(s)    | 1        | 2         | H2O  | 1        | 1         | #N/A |
| γ-Fe2O3/Fe3O4                    | 4 γ-Fe2O3 (s) + Fe2+ + 2 e> 3 Fe3O4 (s)     | -51.505  | 0.267  | 4.51   | 0.178  | 3.01   | 2       | Fe3O4(s)    | 1        | 3         | #N/A | 1        | 1         | #N/A |
| γ-Fe2O3/Fe3O4                    | 3 γ-Fe2O3 + H2O + 2 e> 2 Fe3O4 + 2 OH-      | 367.529  | -1.905 | -32.19 | -1.550 | -26.19 | 2       | Fe3O4(s)    | 1        | 2         | OH-  | 1.00E-06 | 2         | #N/A |
| Fe(OH)3/Fe3O4                    | 3 Fe(OH)3(s) + H+ + e> Fe3O4 + 5 H2O        | -73.347  | 0.760  | 12.85  | 0.287  | 4.85   | 1       | Fe3O4(s)    | 1        | 1         | H2O  | 1        | 5         | #N/A |
| Fe3+/Fe3O4                       | 3 Fe3+ + 4 H2O + e> Fe3O4 + 8 H+            | -15.129  | 0.157  | 2.65   | 2.701  | 45.65  | 1       | Fe3O4(s)    | 1        | 1         | H+   | 1.00E-08 | 8         | #N/A |
|                                  |                                             |          |        |        |        |        |         |             |          |           |      |          |           |      |

## Reactive Mineral (Intermediate) Phases Reductant is (on) the mineral surface

- Not reflected in remote solution phase measurements (e.g., ORP)
- Chemical reactivity probe (CRP) like resazurin shows reactivity
- Resazurin: (1) purple = oxidized, (2) pink = reduced.



SERDP ER-2308 (Tratnyek and Johnson)

YouTube Video





#### **Paul Tratnyek Processes Competing for Reduction** tratnyek.org ZVI as and example $\epsilon_{H_2O}$ Capacity vs. Efficiency H<sub>2</sub>O/H<sup>+</sup> Natural Reductant Demand (NRD) Inaccessible Fe<sup>0</sup> Fe<sup>0</sup> ε<sub>02</sub> Fe<sup>0</sup> $\epsilon_{Fe(0)}$ $\epsilon_{NRD}$ Fe<sup>0</sup> Eother Other ZVI oxidants EP or ECOC coc He, Gong, Fan, Ttratnyek, Lowry (2020) Quantifying the efficiency and ε selectivity of organohalide dechlorination by zerovalent iron. Environ. Sci. Proc. Impacts 22(3): 528-542.

# Requirements for Adequate Degradation





# Stability Regions of Soluble Iron Species in the Presence of Free Sulfide



Figure 14. pH-Eh diagram of the relative stability of the inorganic dissolved Fe species in an inorganic solution with an average seawater composition and a total dissolved Fe(II) activity of  $10^{-9}$ .





A different way to look at soluble iron and iron sulfides



