Background

Orange County Water District

OCWD was formed in 1933

- Management of the OC Groundwater Basin
- Protect rights to Santa Ana River water
- 19 municipal and special water districts
- 2.5 million residents

Extent of PFAS Impact in OCWD Service Area

- 11 water retailers (i.e. groundwater "producers") and 58 wells in the service area impacted by 10 ng/L PFOA Response Level
- Up to ~1/3 of groundwater basin production (100,000 afy) unable to be served
- >\$50 million/year additional alternative water supply cost for treated imported surface water

Observations

- PFAS contamination is currently a national issue for both military and civilian drinking water sites
- Granular activated carbon (GAC) and ion exchange (IX) resin treatment have become the most economical solution in removing PFAS compounds from groundwater and considered best available technologies
- The Yorba Linda Water District (YLWD) was one of eleven (11) groundwater producers whose wells had low levels of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)

AQUEO USVETS®

Approach & Activities

PFAS Technology Evaluation

Granulated Activated Carbon (GAC)

PFAS Treatment Pilot Test

- Purolite® Purofine
- DuPont Amberlite PSR2+®
- ECT2 Sorbix™ LC4
- 4 GAC Medias including subbituminous and bituminous carbon

PFAS Treatment Facilities for 11 Water Retailers

- 36 PFAS WTPs
- 58 Wells
- 96 Lead-Lag Pairs of Vessels
- \$275M Capital Cost

Yorba Linda Water District— History

- Established in 1909
- 25,000 service accounts
- 9 groundwater wells
- 14 reservoirs
- 12 booster pump stations
- 4 imported water connections
- 25 MGD PFAS Water Treatment Plant

Yorba Linda Water District PFAS Treatment

Results

Option 1: 3 PFAS Water Treatment Plants

Option 2: Centralized Plant at YLWD HQ's

3D YLWD PFAS Treatment Plant Walk-Through

YLWD PFAS Water Treatment Plant

PFAS WTP Pre-Filters and Ion Exchange Vessels

Booster Pump Station, Backup Generators & Chlorination Facilities

Lessons Learned

Choosing a Quality System

Understanding and selecting mechanical designs

Evaluating the design can provide cost savings

- Reduced building and construction costs
- H₂O distribution and collection system
- Reduced head loss resulting in decreased energy consumption
- Optimized media utilization

Computation Fluid Dynamic (CFD) Modeling

Illustrates distribution and collection of flow

Total Cost of Ownership

Patented AV® design offers clients the lowest cost of ownership

Illustrative energy savings from typical AV design

Construction Challenges

COVID

Labor shortage

Supply chain issues

Operations impact

Increased Construction Costs

Lead-time for utility agency review

Schedules – delays cost \$

Vendors, contractors, consultants

Bob Bergsgaard - rbergsgaard@aqvets.com AqueoUSVets® | Redding, CA