Challenging today. Reinventing tomorrow. Jacobs

Quantification of the NSZD Rate for a Petroleum-based DNAPL Body through Biogas Efflux and Aqueous Indicators

Objectives

- Evaluate total attenuation rate of petroleum-based DNAPL (petroDNAPL) body at former industrial facility in the Caribbean
- Quantify natural source zone depletion (NSZD) rate by measuring biogas efflux and quantify aqueous-phase attenuation rate using geochemical indicators

Background

- Peer-reviewed publications that quantify NSZD rates for petroDNAPL bodies largely absent from the literature although petroDNAPL and petroLNAPL degrade through similar processes (Table 1)
- C_{10-30} aromatic composition petroDNAPL, partially underlying capped landfill at depths ranging from 10 to 60+ feet below grade
- Site near coast with groundwater temperatures near 30°C
- CH₄ concentrations observed near saturation in the saturated zone

petroDNAPL NSZD processes. hydrocarbons both in the aqueous phase and directly on the surface of the petroleum DNAPL

onnected DNAPL could migrate into a well screen tha acts as a preferential flow path due to lack of in-well capillary pressure.

can be coated with DNAPL and become puoyant. When they migrate upwards and "pop" on surface water, they can create a visible sheen

APL cannot move due to its disconnected nature and/or lack of enough interconnect DNAPL head ressure) to displace the WATER and GAS that are blocking its path through the adjacent soil pore throats.

BioGAS is created by direct contact oil biodegradation and it i emitted as gas bubbles via a process called outgassing Solubility-level concentrations of CH₄ in water samples are indicative of the occurrence of oil biodegradation and outgassing

NSZD Approach

- NSZD rates measured at 40 locations across site, including 16 locations on earthen landfill cap
- Soil gas CO₂ efflux measured using dynamic closed chamber (DCC) equipped with infrared gas analyzer
- Soil gas samples collected at all locations to evaluate Carbon 14 (¹⁴C) signature of CO₂ using the barium carbonate precipitation method
- DCC and ¹⁴C results used to estimate location-specific NSZD rates
- Sitewide NSZD rate estimated by integrating across survey network

 Table 1. PetroDNAPL and PetroLNAPL Comparison

		8000
PetroDNAPL	PetroLNAPL	7000
Sinks	Floats	6000
Releases CH ₄ into groundwater, a	Releases CH ₄ directly into vadose zone	5000
substantial portion of CH ₄ reaches the	where it is converted to CO ₂	5000
vadose zone where it is converted to CO ₂		4000
NSZD rates under-represented in	NSZD rates commonly quantified by	3000
literature	measuring CO ₂ efflux at ground surface	2000

Table 2. NSZD Rates from Events 1 & 2.

Event

Event ⁻

Event 2

NSZD Rate

(gal/year)

3200

3900

NSZD Rate per Area (gal/acre/year)

150

190

Figures 3 & 4. NSZD rates from vents 1 & 2, respectively. NSZD rates shown in g/m²/day.

Jeff Ford | Jacobs Audrey Sidebottom | Dow Chemical Hector M. Hernandez | Jacobs

Tom Palaia | Jacobs Nicholas T. Mahler | Jacobs Alex Metcalfe | Jacobs

Figure 6 & 7. Simulated distillation chromatogra and bar chart for site petroDNAPL espectively.

Figure 5. Dynamic closed chamber with infrared gas analyzer.

Aqueous Approach

- Aqueous attenuation rate estimated using geochemical indicators and industrystandard mass budgeting techniques (NRC, 2000) for the upper and lower aquifers
- Geochemical parameters included dissolved oxygen, nitrate, dissolved iron, sulfate, sulfide, carbon dioxide, and methane

auifers, respectively Salinity isocontours depict position of saltwater wedge

Table 3.Aqueous attenuation rates for upper and lower aquifers from Events 1 & 2.		
Event	Upper Aquifer (gal/year)	Lower Aquifer (gal/year)
Event 1	31	0.26
Event 2	21	0.31

Results

- NSZD and aqueous attenuation rates successfully quantified
- NSZD rate substantially higher than aqueous attenuation rate

Lessons Learned

- Total attenuation rate for petroDNAPL bodies may be underestimated by orders of magnitude without accounting for NSZD rates
- CO_2 efflux may be measured through an earthen landfill cap
- Similar methods may be applied to petroDNAPL sites (e.g. coal tar or creosote)
- Natural attenuation processes provide a robust containment strategy for petroDNAPL bodies, especially near coast due to presence of saltwater wedge

Reference: National Research Council 2000. Natural Attenuation for Groundwater. Remediation. Washington, DC: The National Academies Press.

www.jacobs.com

