Sulfate-Enhanced Bioremediation of Petroleum Sites in Alaska

Edward Heyse, PhD, PE Bruce Henry, PG Brian Blicker, PE

Galena Site Summary

- Located in Alaska interior on Yukon River
- Former USAF Forward Operating Location
 - Base closed in 2008 USAF responsible for cleanup
 - Currently home to a high school (boarding school) and airport
- Remote!
 - Accessible only by barge or air
 - No hotels, rental car agencies, restaurants; limited local support
 - Electric power generated on-site from fuel barged in each summer

Galena Hydrology and Weather

- Aquifer consists of river deposits
 - ~ 0-5' bgs fill material
 - ~ 5'-15' bgs silt layer
 - >15' bgs gravels and sands, more gravel with depth
- Groundwater
 - Flows toward the river for most of the year
 - Flow reverses direction in spring when ice breaks on river
 - 20+ foot water table fluctuation
- Short field season (April September)

Galena Fuel Sites

- Fuel releases from pipelines and tanks
- Often Arctic diesel and usually heavily weathered (JP-4 at ST009)
- Residual NAPLcontaminated soil source area extends from bottom of vadose zone to top of permanently saturated zone (wider at top and bottom)

Fuel Sites Remedial Design

- SVE or Bioventing in NAPL source area at 5-15 ft (also excavation and landfarming)
- SVE or Bioventing in NAPL source area at 15-25 ft bgs
- Sulfate Enhanced Bioremediation in NAPL source area 25-35 ft bgs
- Monitored Natural Attenuation for downgradient plume

Design -- Why Sulfate?

- Role of sulfate in hydrocarbon degradation
 - 97% of petroleum hydrocarbon biodegradation (via natural attention) is through anaerobic processes
 - Nearly 75% of petroleum hydrocarbons are degraded through reduction of sulfate if sulfate concentrations ≥ 200 mg/L
- Parsons "NAPL Away" US Patent 8,679,340 B1 (March 25, 2014)
 - Enhanced anaerobic bioremediation for LNAPL source zones / residual saturation
 - Amendments, specifically including sulfate, may be added as dissolved phase or slow-release minerals (e.g., gypsum)
- Conditions at Galena sites amenable for sulfate-enhanced bioremediation
- Specific Galena advantages of sulfate over air sparge

Technology Application at Galena Redox Conditions Before Sulfate Injection

Constituent	Upgradient	ST009 Source Area	ST009 Plume	ST009 Downgradient	SS014 Downgradient
	06-MW-01 4/22/12	1572-MW-03 9/2/13	1572-MW-04 9/2/13	10-MW-05 9/3/13	SS014-MW004 9/13/13
Benzene (μg/L)	0.601 J	3200	460	98	18
DRO (μg/L)	33.2 U	5900	8600	250 J	6800
Dissolved Oxygen (mg/L)	0.65	0.41	0.35	0.16	0.21
Iron (Dissolved) (mg/L)	0.022 U	109	36.4	76.5	96.8
Sulfate (mg/L)	34.7	0.18J	10.3	0.449 J	0.462 J
Methane (μg/L)	54	2400	2700 J	3000	5100
ORP (mV)	93.4	-66.2	-26.9	-41	-75

- Moderate natural levels of sulfate depleted (methanogenic in source areas)
- High dissolved iron concentrations (potential to precipitate sulfide)

Comparison of Air Sparging and Sulfate-Enhanced Bioremediation

	Air Sparging	Sulfate-Enhanced Bioremediation
Treatment Mechanisms	Volatilization /Stripping – VOCs only Aerobic Biodegradation	Anaerobic Biodegradation
Electron acceptor	O_2	SO ₄ ²⁻
Solubility	8 mg/L (air)	1400 mg/L (gypsum)
Mass hydrocarbon mineralized /	0.35 g benzene / g O ₂	0.233 g benzene / g SO ₄ ²⁻
mass of electron acceptor	0.294 g C ₁₂ H ₂₃ / g O ₂	$0.196 \text{ g C}_{12} \text{H}_{23} / \text{ g SO}_4^{2-}$
Mass of hydrocarbon mineralized	2.8 g benzene	327 g benzene
per 1000 liters of water at solubility	2.35 g C ₁₂ H ₂₃	274 g C ₁₂ H ₂₃
Electron acceptor priority	$O_2 > NO_3^- > Fe/Mn > SO_4^{2-} > CO_2$	$O_2 > NO_3^- > Fe/Mn > SO_4^2 > CO_2$
Percent operational	50%	100%
Infrastructure	Blowers, sparge wells and manifolds	No permanent infrastructure
Energy requirements	High pressure blowers	None
Materials to be transported to	Equipment; Fuel for increased energy	Sulfate amendments
Galena	demand; Electricity costs \$0.67/kWh	
O&M	Maintain blower operations, groundwater monitoring	Groundwater monitoring

Design Considerations

- Emplace gypsum (CaSO₄·2H₂O) to slowly dissolve over time in "lower pancake" NAPL source area
 - Inspired by PRB concept emplace gypsum in "injection zones" near upgradient end of source area and allow groundwater to distribute dissolved sulfate across source area
- "Injection zone" thickness designed to supply sulfate for five years
 - Thickness of injection zone = Design time for gypsum dissolution x groundwater flux x gypsum solubility / (porosity x gypsum concentration in slurry)
- Spacing between "injection zones" designed based on groundwater velocity and estimated sulfate utilization rate
- Do not fill the entire pore space keep groundwater flowing through (not around) injection zone
 - Injection slurry originally designed for 7.7% solids (later increased to 10.4%)
 - Did not design monolithic "injection zone" dispersed injection points to ensure water could flow between points

Sulfate Injection Zones – Plan View

Sulfate Injection Zones – Profile View

Implementation and Monitoring

- Gypsum "injection zones" emplaced during 2017 field season
 - Injected 196,000 lbs of gypsum in 340 boreholes at 3 sites
- Annual groundwater monitoring
 - GRO/DRO/RRO, VOCs, Methane, Sulfate

Injection Zone Longevity

- Design life = 5 years
- Sulfate source on track to be depleted within 4 years
- Groundwater flux likely greater than estimated in design
- Wells:
 - MW004 = at injection zone
 - MW005 = 50 feet downgradient of injection zone
 - MW006 = 100 feet downgradient of injection zone
 - MW-03 = downgradient of supplementary injection zone

Sulfate Utilization and Indication of Biological Activity

- Sulfate travels ~
 125 feet
 downgradient of
 first injection
 zone before
 reaching ambient
 levels
- Increased methane in source area and downgradient indicates biological activity

Impact on Groundwater

Impact on Groundwater -- DRO

- Total DRO concentrations detected by Method AK102 initially increased
- Silica Gel cleanup shows < 5% of Method AK102 detection are non-polar compounds
- Most of Method AK102 result are partially degraded polar by-products
 - Acids, alcohols, ketones, esters and phenols have higher solubility than aromatic and aliphatic hydrocarbons

Summary

- Sulfate enhanced-bioremediation designed/installed as "green" remedies to address residual petroleum source areas for three sites at Galena
 - Systems generally working as designed
 - Gypsum depleted somewhat faster than designed – groundwater flux likely greater than estimated
- Fuel contaminant concentrations decreasing in groundwater
 - Sulfate responsible for ~ 7% of total mass removal at Site ST009

