

Dynamic Remediation

Furthering Hydraulic Characterization: Visual Mapping of Injection Data

Andrew Kavanagh, LPG Project Manager II REGENESIS

Intro to Dynamic Remediation Challenges with Injection Projects Managing Injection Data Through Visual Mapping Summary

Dynamic Remediation Process

Design

Field-Ready Remedial Design Application in

Collaboration with Technical Services

RRS is intimately familiar and engaged with remedial design

RRS is focused on understanding site goals and objectives

RRS plans for changes in the design that will best ensure that the goals and objectives are achieved.

RRS correlates subsurface lithology, hydraulics, and design.

Comprehensive understanding of the reagents being applied, their chemistry, and distribution properties.

Detailed knowledge of design assumptions

Calibrate

Calibrate the design to match field conditions and injection-dose response Observe and adjust for topographic variations and obstructions on-site Initial injection points completed using placement validation process

- Piezometers
- Soil cores (pre and post injection)
- Geochemical signatures of amendments
- Synergistic real-time communication with project team

Application

Application performed with high efficiency using the safest operating procedures

State-of-the-art pressure and flow transducers

Provide high precision measurements

Real-time communication with project teal

Quantitative observational reporting

Confirmation

"Trust but Verify"

Confirm the model throughout project

Adapt efficiently AND intelligently

Understand what drives the model

Understand the remedial amendments

Observe and describe effects of hydraulic augmentation

Continued confirmation throughout application.

Dynamic Remediation

1. Design

field ready remedial strategy

2. Calibrate

assumptions vs field conditions and formation response

3. Application

high efficiency using the safest operating procedures

4. Confirmation

distribution through the target treatment zone

Challenges with Injection Projects

Initial design assumptions are only estimates

- Limited data density
- Significant assumptions as a result

Complex/difficult geology/hydro/COC transport

- High heterogeneity
- Multiple contaminant flux zones
- Commingled plumes

Budget/timeframe constraints

Project fast tracked to remedial action

Don't Panic!

There is a Wealth of Data Collected During Injections

Pressure	Injection Point	Date	Time	Injection Depth (ft. bgs)	Injection Pressure (psi)	Flow Rate (gpm)	Volume of PlumeStop Injected		
							Beginning Flow Meter (gal.)	Ending Flow Meter (gal.)	Gallons Per Interval
				5-3			0.0		0.0
Flow rate	B31	7/2/2021	13:46	7-5	20	2.0	0.0	85.0	85.0
		7/2/2021	14:58	5-3	10	2.1	85.0	171.2	86.2
	B32	7/7/2021	9:16	7-5	5	2.0	0.0	85.0	85.0
		7/7/2021	10:26	5-3	5	1.5	85.0	171.2	86.2
Valuma	B33	7/8/2021	10:52	7-5	60	2.5	0.0	60.0	60.0
volume		7/8/2021	11:19	5-3	60	2.7	60.0	120.0	60.0
	B34	7/7/2021	12:24	7-5	10	1.2	0.0	43.0	43.0
_		7/7/2021	13:06	5-3	5	1.5	43.0	85.6	42.6
Donth	B35	7/2/2021	13:41	7-5	20	2.0	0.0	85.0	85.0
Depth		7/2/2021	14:58	5-3	10	2.1	85.0	171.2	86.2
	B36	7/7/2021	9:16	7-5	5	2.0	0.0	85.0	85.0
- • • •		7/7/2021	10:26	5-3	5	1.5	85.0	171.2	86.2
Point Spacing	B37	7/8/2021	9:54	7-5	35	3.4	0.0	60.0	60.0
		7/8/2021	10:52	5-3	30	3.1	60.0	120.0	60.0
	B38	7/7/2021	12:24	7-5	5	1.2	0.0	43.0	43.0
					_				

What do you typically do with it?

What can you do with it?

How do you do it?

Setup a 2-Pass Approach for the Barrier

Divide the row into 2 sets of points

Ex. 50 pts = 25 pts per set

First pass of points is a base dose "data collection" set.

Collect data during the first pass

Import data into predesigned excel sheet

Setup with conditional formatting showing red/green

Review data in real time (on-site and in office)

Lead designer makes adjustments as needed and field team prepares for second pass

Execute second pass

Second pass is a modified dose based on data collection and interpretation from first pass

Site Background

CVOC site (Mostly PCE/TCE)

TTZ 32-40' bgs

PlumeStop barrier approach

DV-4

HPT >100 PSI except from about 32 to 37 ft bgs in this boring

Correlates with XSD (CVOC) detector hits.

However, this zone is laterally discontinuous and completely disappears in some areas!!

Overcoming Challenges

Results

98% Reduction in Total VOC

Results

99.9% Reduction in Total VOC

Results

Reduced/Maintained Non-Detect

In situ injections are high density hydraulic characterization. (if done below fracture threshold)

The use of visual mapping of these data greatly improve technical decision making.

There is no additional cost! Anyone can do it!

