The In Situ Treatment of Dissolved BTEX and Gasoline Residues Using Micro Activated Carbon

R. McGregor

InSitu Remediation Services

Battelle 2023

Background

In Situ Current Approaches

- Proven
 - Sorptive
 - Colloidal, micro, powdered
 - Bioremediation
 - Anaerobic & aerobic
 - Chemical oxidation
 - Volatization
 - Sparging and vapor extraction
 - Surfactant & co-solvent

Background

Background

- PetroFix coats soils in flux zones with a micrometer thick layer
- Longevity flux from upgradient or back-diffusion captured over time
- NO₃ + SO₄ kick-start bioremediation = biofilm formation
- In situ carbon regeneration = contaminant destruction and > longevity

Courtesy: Regenesis

Study Site

- Commercial Facility
 - Downgradient of gas station
 - BTEX up to 9.5 mg/L
 - GRO up to 16.5 mg/L
 - Trace NAPL
- Previous remedial efforts
 - MPE for removal of LNAPL
 - AS/SVE
 - Angled wells
 - Upgradient aerobic barrier
 - Waterloo Emitters

- Geology
 - Dense sand with some silt
- Hydrogeology
 - Unconfined aquifer
 - Water table ~70 ft below surface
 - K: 5×10^{-6} to 6.3×10^{-4} m/sec
 - Groundwater velocity ~ 9 m/year
- Geochemistry
 - Iron & sulfate reducing

Study Site - Monitoring

- Groundwater Monitoring
 - Combination of 2" wells (3)
 - GRO-DRO, BTEX, inorganics, general chemistry
 - Microbiological analyses
 - CSIA
 - Groundwater
 - Pre-injection (2 events),
 - Post-injection Days 122, 248, 362, 547, & 724
- Aquifer Solids
 - Continuous cores for TOC, pre- & post injection

Study Site Layout

Remedial Progress: Pre Remedial

Remedial Progress: Post MPE

Remedial Progress: Post Emitter

Study Site Layout

Study Site Injection Plan

- Test Area:
 - 4000 ft² area
 - Targeting plume underneath facility
- Reagents
 - Micro activated carbon (Petrofix[™])
 - Gypsum
 - Oxygen Releasing Compound [™]
- Injection
 - 8 angled injection wells (2" PVC)
 - 5 direct push points

Study Site Horizontal K

Study Site Pre-Injection TOC

Study Site Post Injection TOC

Study Site Treatment with Time

Study Site Treatment with Time

Study Site Microbiology

family

Study Site Summary

- Treatment with 3 months of application
 - Greater than 98% reduction in GRO and BTEX concentrations
 - Evidence of change of microbiological community following injection of Petrofix
 - Removal of BTEX to below 200 μ g/L for greater than 2 years
 - Greater than 99% of samples within target injection zone had Petrofix present

