EOS Remediation is now a Redox Tech company.

Carbon + Nutrients = Stronger Bacteria = Faster Remediation

J. Fausto Ortiz-Medina, PhD (EOS Remediation), Bilgen Yuncu, PhD, PE (TRC Companies), and Lydia Ross, PE (EOS Remediation)

> Sixth International Symposium on Bioremediation and Sustainable Environmental Technologies May 8-11, 2023 | Austin, Texas

Presenter: Lydia Ross, PE

- B.S. Mechanical Engineering University of Pittsburgh
- M.S. Engineering Management Florida International University
- 17 years of remediation design & implementation experience
 - 13 in consulting
- Based in Garner, NC
- Two Dogs and a Cat All Rescues
- Super "Auntie LaLa" to my niblings
- Chef
- Artist
- Volunteer
 - <u>www.comfortzonecamp.org</u>

• <u>www.gwpnc.org</u>

Steele

Why bioremediation?

Long Lasting Technology

Adamson et. al. 2011

Rebound vs. Sustained Treatment

McGuire et al. 2006

Bioremediation of chlorinated compounds: Enhanced reductive dechlorination (ERD)

Conditions for rapid biological activity

- Adequate bacterial concentrations
 - (~10⁷ cells/mL)
- pH close to neutral
 - (6.5 7.0)
- No inhibitors or competing reactions
- Good substrate distribution
- Enough nutrients

Importance of nutrients

- Essential elements for growth (carbohydrates, proteins, lipid membranes, DNA, etc.):
 - Carbon
 - Nitrogen
 - Phosphorus
 - Oxygen
 - Hydrogen
 - Sulfur
 - Magnesium
 - Calcium
- The proportion of elements depend on type of microorganism and conditions and are often empirical
 E.g. Redfield ratio, C:N:P = 106:16:1

- Trace elements required for specific processes (e.g. enzymatic processes, redox control):
 - Iron
 - Cobalt
 - Manganese
 - Copper
 - Zinc
 - Molybdenum

Bioremediation of chlorinated compounds: Enhanced reductive dechlorination (ERD)

Needs external source of B₁₂ ullet

۲

Can produce B₁₂

Importance of nitrogen for ERD

- Nitrogen atoms (N) are mainly needed for proteins and nucleic acids
- Nitrogen can be assimilated from atmospheric nitrogen (N₂) or from fixed molecules (e.g. NH₄⁺,NO₃⁻).
- While N₂ fixation can provide N to DHC (from other organisms) during ERD, addition of external N results in higher dechlorination rates.

Kaya et al., 2019

Importance of vitamin B₁₂ for ERD

- Cyanocobalamin (Vitamin B₁₂) is needed to synthesize cofactor for reductive dehalogenase enzymes.
- As DHC cannot synthesize B₁₂, it must be provided by other microorganisms or present on site.
- Adding B₁₂ increases complete dechlorination rates

Bioremediation of a challenging site

- Former manufacturing site in North Carolina.
- High concentrations of chlorinated compounds detected in 2008:
 - PCE: >10,000 µg/L
 - TCE: >1,000 µg/L
- pH ~5
- High concentrations of sulfate
 - >3,000 mg/L
- IO Dehalococcoides (DHC) cells/mL

Initial bioaugmentation

- Bioaugmentation culture + emulsified vegetable oil (EVO) + colloidal buffer (CoBupH) injected.
- Increase in DHC population (~2 x 10⁴ cells/mL)
- Excellent PCE and TCE removal
- High cDCE and VC
- No Ethylene detected

Pilot test to optimize bioremediation

- Nitrogen <0.15 mg/LTKN.
- A solution of nutrients (PLUS) was added to groundwater samples.
- Growth of DHC was stimulated. cDCE and VC were degraded at a faster rate than controls.

Second injection event

• Nutrients were supplemented along with substrate to optimize bioremediation.

Bioaugmentation culture

Emulsified vegetable oil substrate with nutrients

Colloidal buffer for pH control

Performance after second injection

- DCE and VC decreased (>3-fold reduction in ~2 years).
- Ethylene was produced.
- pH has been stable for years

Performance after second injection

E Company

Growth of dechlorinating bacteria due to amendments

Performance after second injection event

2013

Lessons Learned

- Nutrients are an essential part of bioremediation.
- Adding appropriate nutrients (e.g. Nitrogen and vitamin B₁₂) can accelerate removal rates.
- Adding nutrients helps to overcome 'DCE stall' and achieve complete dechlorination.
- EOS Remediation products are designed to optimize nutrients for ERD.

Thank you!

Lydia Ross, PE Iross@eosremediation.com +1 (412) 613-7831 www.eosremediaiton.com www.redox-tech.com

Supplementary slides

Target Contaminants for ERD

- Chlorinated Solvents

 Ethenes (PCE,TCE)
 - \circ Ethanes (TCA)
 - \circ Methanes (CT)
- Explosives (TNT, RDX, HMX)
- Nitrate (NO₃⁻)
- Perchlorate (ClO₄-)
- Chromate (CrO₄⁻²)
- Radionuclides (TcO₄⁻, UO₂⁺²)
- Acid Mine Drainage

Soil pH

Biota of North America, 2012 http://www.bonap.org/

Copyright © 2023 EOS Remediation

Sources of low pH: Substrate fermentation

Vegetable Oil Fermentation

- Natural fats \rightarrow Triglycerides
 - o Glycerol
 - Three long chain fatty acids (LCFA)
 - Bacteria hydrolyze ester linkages releasing glycerol and LCFA
- Glycerol (Very soluble, Easily biodegraded)
- Beta Oxidation of LCFA (e.g. linoleic acid or C₁₈H₃₂O₂)

 $C_{18}H_{32}O_{2} + 2H_{2}O \rightarrow C_{16}H_{30}O_{2} + C_{2}H_{4}O_{2} + H_{2}$ $C_{16}H_{30}O_{2} + 2H_{2}O \rightarrow C_{14}H_{28}O_{2} + C_{2}H_{4}O_{2} + H_{2}$ $C_{14}H_{28}O_{2} + 2H_{2}O \rightarrow C_{12}H_{26}O_{2} + C_{2}H_{4}O_{2} + H_{2}$ $C_{14}H_{28}O_{2} + 2H_{2}O \rightarrow C_{12}H_{26}O_{2} + C_{2}H_{4}O_{2} + H_{2}$ $C_{18}H_{32}O_{2} + 16H_{2}O \rightarrow PC_{12}H_{26}O_{2} + C_{2}H_{4}O_{2} + H_{2}$ $C_{18}H_{32}O_{2} + 16H_{2}O \rightarrow PC_{12}H_{26}O_{2} + 14H_{2}$ $C_{18}H_{32}O_{2} + 16H_{2}O \rightarrow PC_{12}H_{26}O_{2} + 14H_{2}$

Carbonate System and pH

 $CO_2(g) + H_2O \Leftrightarrow H_2CO_3 \Leftrightarrow H^+ + HCO_3^- \Leftrightarrow 2H^+ + CO_3^{2-}$

Acid (H⁺) Release from CO₂ Production below Water Table

 $CO_{2} + H_{2}O \Leftrightarrow H_{2}CO_{3}$ $H_{2}CO_{3} \Leftrightarrow H^{+} + HCO_{3}^{-}$ $K_{eq} = \underbrace{[H^{+}][HCO_{3}^{-}]}_{[H_{2}CO_{3}]}$ 0.6 0.6 0.4 0.4 0.4 0.2

$$CO_2 + H_2O \rightarrow \alpha H_2CO_3 + (1-\alpha)H^+ + (1-\alpha)HCO_3^-$$

Aquifer Buffering Capacity

Surface Complexation and Ion Exchange

- H⁺ and OH⁻ exchange on Fe and AI oxide surfaces and clay minerals
- Strong buffer, reduce the pH decline \rightarrow adsorbing H⁺
- Increase required base amount to increase aquifer $pH \rightarrow adsorbing OH^{-}$

Performance after second injection

 Σ Eth = [PCE] + [TCE] + [DCE] + [VC] + [ethene] Σ Cl = 4[PCE] + 3[TCE] + 2[DCE] + [VC]

] \rightarrow concentration in mole/L or

µmole/L

Copyright © 2023 EOS Remediation

 $CI\# = \Sigma CI / \Sigma Eth$

MW-18 Source Area Treatment

2018 Injection

- Double normal EOS Pro loading
- \circ Extra N + P + B₁₂ + yeast extract
- \circ Massive amount of Mg(OH)₂ + KHCO₃

