

Min-Trap[™]

Min-Traps[®] for Collection and Analysis of Reactive Iron Sulfide Minerals for Abiotic CVOC Degradation

Craig Divine, Shandra Justicia-León, Jennifer Martin Tilton, David Liles (Arcadis) Dora Taggart and Kate Clark (Microbial Insights)

April 9, 2023

In Situ Enhanced Reduction

Abiotic Degradation

- Fermentable organic carbon provides electrons which drive microbial Fe³⁺ and SO₄²⁻ reduction
- Fe²⁺ and HS⁻ are generated and FeS (mackinawite) and FeS₂ (pyrite) can then form (jointly referred to as FeSx)
- Reductive elimination results in degradation acetylene products not easily measured

Adapted from Yu et al. (2018) and Horst et al. (2019)

Green arrows indicate biologically mediated processes, **black** arrows indicate abiotic reactions

Biotic Degradation

Fermentable organic carbon provides the electrons that drive the biologically mediated sequential reduction process

Evidence for Persistent Synergistic Biotic and Abiotic Treatment

> Anaerobic reduction results in **sustained** long-term treatment

- Biological recycling results in persistent TOC
- Long-term redox and treatment likely controlled by newly-formed FeSx
- Both processes result in enhanced degradation rates and control "rebound"

Chlorinated ethene compound	No DVI (days)	DVI added (days)	Difference (days)
PCE	150	85	65
TCE	168	107	61
cis-DCE	236	112	124
VC	193	158	35

Davis et al. (2018)

 Addition of iron can result in faster treatment (and likely increased formation of FeSx)

There is an opportunity to better optimize the design and operation of these systems, especially the abiotc components

How do we know what's really happening under the surface?

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC-ND</u>

Groundwater samples

- Must extrapolate data to solid-phase processes
- Loss of reactive species (e.g., HS⁻ or Fe²⁺)
- Snapshots in time

Geochemical modeling

- All models have simplifying assumptions
- Predicts equilibrium conditions (kinetics not considered)

Soil samples from drill cores

- Costly, often a one-shot opportunity
- Obtaining representative samples can be difficult
- Samples may have significant background "noise"

There is a clear need to improve our ability to assess mineralogical changes at remediation sites

Soil sample with heterogenous mineral distribution

Soil core with heterogenous mineral distribution

Min-Traps: Something New

- → Collects minerals actively forming at site using existing monitoring well network
- → Representative of conditions in higher-flux zones
- → Inexpensive, easily repeated
- ➔ No significant background "noise" in samples

- > Min-Traps can conclusively document the formation of specific minerals.
- Therefore, they can be used to verify important geochemical and remedial processes that usually are only inferred.

Min-Trap Design

- → A 15-inch long PVC slot-screen housing containing multiple porous media pillows
- → Customizable porous medium inside mesh pillows acts as a matrix for precipitating minerals
- ➔ Analytical packages are tailored based on technical objectives
- → Patented; manufactured/sold by Microbial Insights

Potentially Applicable Analyses

Chemica	 Total Fe Aqueous and Mineral Intrinsic Bioremediation Assessment (AMIBA) Weak and strong acid soluble iron (WAS, SAS) Acid-volatile sulfide (AVS), chromium-extractable sulfide (CrES) 	Fe minerals Biogenic (pseudocrystalline) vs. crystalline minerals Sulfur forms: FeS vs. FeS ₂ and S ⁰
Microsco	 Light/petrographic Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) 	Mineral grain size, shape, distribution
Spectrosc	 • Energy Dispersive X-ray Spectroscopy (EDS) • X-ray Absorption Spectroscopy (XAS) 	Elemental composition Elemental coordination
Genera	 X-Ray Diffraction (XRD) Magnetic susceptibility (magnetite) 	Mineralogy Magnetic mineral content
Molecula biology	ar QuantArray	Microbial community

Deployment, Retrieval, and Preservation

- 1. Lowering of sampler into monitoring well
- 2. Minimum incubation time ~4 weeks
- 3. At retrieval, sample pillows are separated and double-sealed (using a vacuum sealer and O₂ absorbent packets)
- 4. Can likely hold for a month or more
 - Chill (but don't freeze) pyrite formation may be induced by freezing (e.g., Hua et al. 2021)

Tank Testing

ARCADIS Design & Consultancy for natural and built assets

AMIBA

AMIBA and SEM-EDS definitively show presence of iron sulfide minerals

Demonstration Site 1 ("Immature Site") ARCADIS Design & Consultant and Design

*Min-Traps deployed in 8 wells

Demonstration Site 1 Results

Visual Observations

AMIBA

Min-Traps indicate presence of FeSx minerals at locations where expected

Days

Demonstration Site 2 ("Mature Site")

AMIBA results		WAS Fe		SAS Fe					
Sample	Total Fe (mg/kg)	Fe2+ (mg/kg	Fe3+) (mg/kg)	Total Fe (mg/kg)	Fe2+ (mg/kg	Fe3+) (mg/kg)	Total Fe (mg/kg)	AVS (mg/kg)	CrES (mg/kg)
MW-41	100	38	0.0	38	44	18	62	13	41
MW-8	114	14	1.8	15	18	23	42	1.2	24

- AMIBA: presence of iron sulfide minerals, as expected
- SEM-EDS: Co-located iron and sulfur identified after 5-months' incubation

Min-Traps indicate presence of FeSx minerals at locations where expected

Other Field Sites

Well located at downgradient edge of EHC[™] injection area

WAS Iron SAS Iron (mg/kg) (mg/kg)		AVSulfide (mg/kg)	CrESulfide (mg/kg)	
Fe2+ = 330	Fe2+ = 300	240	120	
Fe3+ = 0	Fe3+ = 30			

Min-Trap™ Samples EHC[®] & GeoForm[®] ER Application

Leigh 2021; <u>https://www.peroxychem.com/media/351499/evonik-webinar-leigh-biogeochemical-processes-web-2021-10-27.pdf</u>

Measuring Abiotic Reaction Rates

- ¹⁴C assay can measure mineral reactivity for TCE on Min-Trap samples
- Standard preservation method is appropriate
- Several pillows are needed to ensure enough sample mass
- Further work is needed to utilize rates in models and decision making

Abiotic reaction rates can be measured from Min-Trap

Other Contaminants

Process	Contaminants	Target Observation within the Min-Trap™	
Enhanced Reductive Dechlorination & Combined Biotic/Abiotic Treatment	Chlorinated solvents	Reactive iron mineral formation, such as magnetite, mackinawite, and/or pyrite	Minerals with uraniur Name Forn Uraninite (U_{1-}^4) Coefficie USU
In-situ Chemical Oxidation	Metals that co-precipitate or adsorb to iron oxides (e.g., arsenic), metals that form low-solubility oxides	Iron oxides or other metal oxides containing co-precipitated and/or adsorbed metalloids/metals	Brannerite (U, Orthobrannerite (U ⁶ - Ianthinite U ⁴⁺ Ishikawaite (U, Lermontovite U(P)
In-situ Chemical Reduction	Cr(VI), U, metals that form sulfides	Increase in the total to dissolved ratio of a metal over time, or FeS _x or other metal sulfide formation	Moluranite H4U Mourite UMe Ningyoite (U, c) Petschekite UFe Sedovite U(Mextreme for the second
pH neutralization (increase or decrease)	Metals	Increase in solid-phase metals in the Min-Trap™	Uranomicrolite (U, c) TyuyamuniteCa(1)CarnotiteK2(1)Imaged by Heritage Auctions, HA.comTorberniteCu[(UO2)(PO4)]2(H2O)8

Uranium

Nickel

Min-Trap Resources

Monitoring&Remediation Advances in Remediation Solutions

New Tools for Assessing Reactive Mineral-Mediated Abiotic Contaminant Transformation

by John Horst, Craig Divine, Jennifer Martin Tilton, Shandra Justicia-León, Shannon Ulrich, and Robert J. Stuetzle

Introduction

It has long been recognized that both biotic and abiotic contaminant transformation processes may be significant at disc with organized by chlorioated weblies

and techniques for assessing mineral reactivity and abiotic transformation, and offers some recommendations for incorporating abiotic processes in remedy design and natural attenuation evaluations.

Horst et al., 2019. New Tools for Assessing Reactive Mineral-Mediated Abiotic Contaminant Transformation. *GWMR*, 39(2): 12-21.

REMEDIATION

THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS, TECHNOLOGIES, & TECHNIQUES

RESEARCH ARTICLE

Laboratory and initial field testing of the Min-Trap[™] for tracking reactive iron sulfide mineral formation during in situ remediation

Shannon Ulrich 🕱 Jennifer Martin Tilton, Shandra Justicia-Leon, David Liles, Robert Prigge, Erika Carter, Craig Divine, Dora Taggart, Katherine Clark

First published: 05 May 2021 | https://doi.org/10.1002/rem.21681

Ulrich et al., 2021. Laboratory and Initial Field Testing of the Min-Trap[™] for Tracking Reactive Iron Sulfide Mineral Formation During in situ Remediation, *Remediation*, 31(3): 35-48.

©ESTCP
DRAFT MINERAL TRAP USER GUIDANCE
ESTCP Project ER19-5190 Areadis Project 20023451
Dr. Craig Divise, Jacobier Martin Tilton, Shannon Urich, Dr. Shandra Jasricia-Lalo, Baviet Like, and Dr. Erika Carner – Arcadic Bora Taggart and Dr. Katherine Clark – Microbial Insights
December 1021
Min-Trap"
ESTCP Final Report
<u>https://www.serdp-</u> <u>estcp.org/projects/details/a5c9108a-49ff-4cf4-</u> a222-95f1b2e8cda8/er19-5190-project-overview
REMEDIATION THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS, TECHNOLOGIES, & TECHNIQUES
DDR: 10.1992/tem.21752 PRACTICE NOTE WILE
Field methods and example applications for the Min-Trap® mineral sampler
Craig Divine ¹ Shandra Justicia-León ² Jennifer M. Tilton ³ Erika Carter ⁴

Divine et al., 2023. Field Methods and Example Applications for the Min-Trap[®] Mineral Sampler, *Remediation*, doi.org/10.1002/rem.21752

Explainer Video

https://microbe.com/min-trap-sampler/

Acknowledgements

Questions

ARCADIS

Erika Carter, PhD Dave Liles

Jennifer Tilton

Dora Taggart Kate Clark, PhD

David Freedman, PhD

VSFB (AFCEC/CZOW) Francesca Perrell Scott Laria Kathy Gerber

18

Assessment Framework

ARCAD	S Design & Consultancy for natural and built assets
-------	---

Parameter		Conditions Indicating Potential Presence of Iron Sulfide Minerals			Sampling Location		
		Favorable	Possible	Unfavorable	In Situ Reactive Zone (Ideal Conditions)	Fringe of In Situ Reactive Zone	Background (Non-Ideal Conditions)
Field measurements: low	GW DO	<0.1 mg/L	<1 mg/L, >0.1 mg/L	>1 mg/L	0.52 mg/L	0.98 mg/L	2.62 mg/L
,	GW ORP	<-50 mV	<150 mV, >-50 mV	>150 Mv	-277 mV	-104 mV	86 mV
	GW Dissolved Fe	>20 mg/L	<20 mg/L, >1 mg/L	<1 mg/L	3.7 mg/L	23.8 mg/L	0.0559 mg/L
Geochemical evidence	$GW \Delta Sulfate$	>200 mg/L	<200 mg/L, >25 mg/L	<25 mg/L	870 mg/L	158 mg/L	227 mg/L
low cost; good accuracy and	GW Sulfide	>1 mg/L	Detectable		7.15 mg/L	0.0426 mg/L	0.0905 mg/L
presicion	GW Methane	>5 mg/L	<5 mg/L, >0.5 mg/L	<0.5 mg/L	0.02 mg/L	0.47 mg/L	0.0033 mg/L
	GW Acetylene	Detectable			0.89 ug/L	< 0.28 ug/L	< 0.28 ug/L
	GW TOC	>20 mg/L	<20 mg/L, >5 mg/L	<5 mg/L	35.3 mg/L	89.7 mg/L	21.9 mg/L
	Black-tinted MT	Significant presence of black precipitates	Limited distribution of grey/black precipitates	Absence of black precipitates	Significant presence of black precipitates	Significant presence of black precipitates	Absence of black precipitates
(conclusive): longer	MT Total Fe	>100 mg/kg	>50 mg/kg	<50 mg/kg	78 mg/kg	97 mg/kg	107 mg/kg
deployment/sampling times; higher costs; good accuracy; low precision	AMIBA: (WAS-Fe2+ + SAS- Fe2+)/(WAS-Total Fe + SAS- Total Fe)	>0.75	<0.75, >0.25	<0.25	1.02	1.03	0.28
	AMIBA: AVS + CrES (if SAS Fe2+ detected)	>20 mg/kg	Detectable	Non-detectable	48 mg/kg	26.3 mg/kg	11.23 mg/kg
	SEM-EDS	Extensive co-location of Fe and S	Limited co-location of Fe and S	No significant S	Extensive co-location of Fe and S	Limited co-location of Fe and S	Not analyzed
Microbiological evidence: fast sampling; high costs; good accuracy and precision	DIRBs and SRBs	<1.00x10 ³	$<1.00 \times 10^{2} - 1.00 \times 10^{3}$	Non-detectable	$8.83 \times 10^3 - 2.67 \times 10^6$	6.17x10 ⁴ – 1.23x10 ⁵	Not analyzed

Horst et al. (2022)