HEATED WATER RECIRCULATION TO ENHANCE IN-SITU ABIOTIC AND BIOTIC DEGRADATION

Fritz Krembs, P.E., P.G. Trihydro, Golden, CO fkrembs@trihydro.com

BATTELLE BIOSYMPOSIUM 2023

ACKNOWLEDGEMENT OF PROJECT TEAM

- USACE Mark Mercier (PM), Andrea Sansom (Chemist), Nick Geibel (Geo.), Quang Le (Eng.), Marissa Lucento (Risk), Molly Maxwell (EM CX)
- EGC, Inc. (Prime) Scott Quint, Rene Hefner
- Trihydro A. Hoyt, A. Vann, C. Carlson,
 M. Olson, T. Speckmann, Many Others
- SiREM P. Dennis, X. Druar, M. Healey
- Buhr Electric, H2K Technologies, Peterson Drilling, Remington Technologies

SITE HISTORY

- Atlas type "F"
- Near Lincoln, NE
- 170-ft deep silo for 82-ft tall liquid-fueled rocket
- Subgrade launch control center (LCC)
- Quonset huts for crew
- Leach field

Atlas F site in Willow, OK, photo provided by M. Maxwell

SITE BACKGROUND

- Currently privatelyowned
- TCE present in groundwater from commissioning/ training/testing
- USACE manages legacy impacts through Formerly Used Defense Sites (FUDS) program

Graphic from USACE 2009 RI

REGULATORY HISTORY

- 2009 RI
- 2010 FS
- 2015 ISB Pilot Test
- 2016 Decision Document
 - Monitored Natural Attenuation (MNA)
 - "Potential addition of amendments and/or microbial consortiums to optimize"
 - Aquifer Use Watch Area

Photo not from Site 7 nor from Nebraska

REMEDIAL ACTIVITIES

- 2008 Begin groundwater monitoring during RI
- 2015 ISEB Pilot Test
 - Injection at 32 injection wells screens, typically nested (pink)
 - 960,000 gallons of 1% emulsified vegetable oil (EVO)
 - Bioaugmentation culture
- 2016 Continued semiannual monitoring to track MNA

Figure modified from USACE 2018

OPTIMIZATION

- Pivot from passive MNA and injection-based ISEB
- 2019 Performance Work Statement to optimize MNA
 - Heating
 - Recirculation
 - ISEB Amendment
- Response Complete by Oct. 2023
 - 4 quarters of TCE below standard
- Site Closeout by Feb. 2024

Photo not from Site 7 but from different site in Nebraska

SITE IMPACTS

Silo Parcel Groundwater Upper End Concentrations

- TCE = 30 ug/L
- cis-DCE = 10 ug/L
- trans-DCE = 8 ug/L
- VC = non-detect to 0.5 ug/L
- Shallow and deep zones

SITE GEOLOGY / HYDROLOGY

- Sand
- Interbedded clay
- Flow to ENE
- K = 11 ft/day
- Sat. thick.= 70 ft
- T = 770 ft2/day
- Seepage velocity = 30 to 60 ft/yr
- Pumping rates = 10 to 100 gpm

Cross Section from USACE 2009 RI

OUTLINE

Introduction / Site Background

Design

- Results
- Lessons Learned

- Hot water injection / recirculation
- Capture zone analysis
- Heat transport modeling
- ISEB amendment

HOT WATER INJECTION /RECIRCULATION

- Physical replacement of TCE-impacted GW
- Hot water as heating medium
- Focus optimization on specific locations
 - TCE impacts
 - Silo Parcel

CAPTURE ZONE ANALYSIS

- Optimize well locations and flow rates
- USEPA's WhAEM model
 - Inputs: Hydraulic conductivity, gradient, saturated thickness, pumping rates
- Final Area 2 iteration shown at right

HEAT TRANSPORT MODEL

- Evaluate hot water injection
- USGS VS2DHI code

LAB BENCH TESTING

- Microcosms at 12°C and 27°C
- Microbial rates faster at higher temperature
 - 2x faster TCE
 - 4x faster sulfate
 - 4x faster methane
 - >4x faster VFAs*

Photos courtesy of SiREM

OUTLINE

- Introduction / Site Background
- Design
 - Results
- Lessons Learned
- TCE treatment
- Heat transport
- Microbial populations

May 2020 Before Optimization

October 2020 Before Optimization More Wells

May 2021 After Area 1 Recirculation and ISEB 4 Months Into

Area 2 Recirculation

May 2022 After Area 1 Recirculation and ISEB 16 Months Into Area 2

Recirculation

TCE – MW01S

TCE – EW01

HEATING

- Consistent 56 F at baseline
- Rapid increase Area 1 (MW01S, MW01D)
- Slower, steady increase
 Area 2 (MW19SD to
 MW23)

HEATING – MW01S

 Area 1 recirculation temperature increase to 85F

HEATING -MW01S

• Area 1 passive 0.5 gpm hot water injection

HEATING – MW01S

• Area 1 less passive 2.3 gpm hot water injection

MICROBIAL POPULATIONS - qPCR

- Dehalobacter non-detect
- Geobacter detected in most locations

MICROBIAL POPULATIONS -NEXT GEN SEQUENCING

- Dechlorinators other than
 Dehalococcoides detected Geobacter Dehalogenimonas
- Methanogenesis/ methanotropy dominant processes
- Residual effects of 2015 biostimulation?

CONCLUSIONS

- Recirculation of hot water effective for heat delivery and TCE removal
- Higher temperatures stimulate microbial processes
- Optimization of MNA on track for Response Complete in 2023

QUESTIONS / DISCUSSION

WHAT WHY WHERE WHEN WHO HOW

LOC

CONTACT INFORMATION

Fritz Krembs, PE, PG Trihydro Corporation Golden, CO <u>fkrembs@trihydro.com</u>
