Biogeochemically Enhanced Treatment of Chlorinated Organics and Metals

Dan Leigh and Alan Seech Evonik Corporation

International Symposium on Bioremediation and Sustainable Environmental Technologies

Biogeochemical Transformation

USEPA Definition: **Processes where contaminants are degraded by abiotic reactions with naturally occurring and biogenically-formed minerals in the subsurface.**

Reactive minerals include iron-sulfides (e.g. pyrite, mackinawite, greigite) and oxides (e.g. magnetite)

Focus on Iron-Sulfide Minerals

Pyrite (FeS₂)

Mackinawite (Fe_(1+x)S

EPA 600R-09/115 www.epa.gov/ada

Iron-sulfide minerals form, and are stable under ERD/ISCR conditions

FeS minerals conveniently form, and are stable in the same Eh, pH range as biological reductive dechlorination (ERD) and In Situ Chemical Reduction (ISCR)

Pyrite (FeS₂)

Mackinawite (Fe_(1+x)S

From USGS Water Supply Paper 2254 Fields of stability for solid and dissolved forms of pressure. Activity of sulfur species 96mg/L as SO₄²⁻, carbon dioxide species 61 mg/L as HCO₃⁻, and dissolved iron 56 µg/L

Iron-Sulfide Minerals Occur in Several Forms Scanning Electron Microscopy (SEM) Images

5 May 8-11, 2023 | Austin, Texas

Metal-Sulfides are less soluble than metal hydroxides under typical aquifer pH

Aqueous Solubility & Stability of Heavy Metals as Hydroxides, Iron Oxyhydroxides, and Sulfides

Arsenopyrite precipitates, and is stable at typical ERD/ISCR - Eh/pH conditions

As, Fe, S, Eh-pH Phase Diagrams

Sulfidation Increases ZVI reactivity and Longevity

"Sulfidation" ... can refer to any modification or transformation of a metal-based material by exposure to sulfur compounds of various oxidation states..."

GeoForm™ ER In Situ Sulfidation Process:

ZVI, sulfate (SO_4^{2-}) , ferrous iron (Fe), and organic carbon (**OC**) are distributed in aquifer

ZVI reacts with water to generate ferrous iron and OH⁻ on surface

Sulfate is biologically reduced to sulfide (HS⁻)

Sulfide replaces OH⁻ on ZVI

Fe²⁺ (ambient, supplied or from ZVI oxidation,) combines with HS⁻ to form FeS coating on ZVI and precipitate on aquifer matrix

EHC[®] and GeoForm[™] ER Application

Leading Beyond Chemistr

Mintrap[™] samples from EHC[®] and GeoForm[™] ER Application

¹⁰ Ulrich, S., Martin Tilton, J., Justicia-Leon, S., Liles, D., Prigge, R., Carter, E., Divine, C., Taggart, D., & Clark, K. (2021). *Laboratory and initial field testing of the Min-Trap™ for tracking reactive iron sulfide mineral formation during in situ remediation. Remediation. 1– 14.* https://doi.org/10.1002/rem.21681

SEM-EDS Results Following GeoForm[™] ER Application Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) **AMIBA Results** 4302 - 65535 AVS (FeS) CrES (FeS₂) SK BSE 33 51% 49% BSE **Co-located Iron and Sulfur** 100 µm 25 µm SE EDS Location map (BSE – Backscatter Electrons) (Identifies Elements on Surface) (SE – Secondary Electrons – Show Morphology) BSE Full scale counts: 1180 14161agu771(7)_pt1 Fe K 16 Sulfu 1400 -1200 -1000 -**EDS Spectra Location 1** 800 -X-ray overlay map 600 -400red = Si, 200 -25 µm keV

Case Study:

Combined ISCR and BGCR Treatment of Chlorinated Organics

- Site Overview
 - Elevated sulfate groundwater (~ 400 to 700 mg/L)
 - High Concentration TCE
 - Permeable Reactive Barrier Application
 - Mixed plume (TCE, 1,2-DCA, CF)
 - One recalcitrant hot spot treatment
- Both properties being developed
- Client wanted aggressive approach
- Evaluated biogeochemical enhanced treatment for both sites

Case Study: Combined ISCR + BGCR for Treatment of High CE Concentration

GeoForm[®] Extended Release Increases EHC[®] Degradation Rates

Results are similar with or without bioaugmentation.

Case Study: BGCR Treatment of Mixed Chlorinated Organics Sequential Treatment of Mixed Plume

Case Study: BGCR Treatment of Mixed Chlorinated Organics GeoForm[®] ER Treats Mixed CEs, CA and CMs

Case Study: BGCR Treatment of Mixed Chlorinated Organics Applied Geoform ER + SDC-9 + MDB-1

Degradation of Combined Chlorinated Ethenes and Ethanes

Geoform[®] **Soluble Application + SDC-9**

GeoForm[™] ER Treats As

PeroxyChem

Presentation Summary

- Biogeochemical Reduction (BGCR) is a naturally occurring process.
- BGCR processes occur with, and will improve ERD and ISCR processes.
- Most site conditions can be modified to optimize BGCR processes.
- BGCR processes enhance the reactivity and longevity of Zero Valent Iron (ZVI).
- BGCR sequesters toxic metals from groundwater.

Dan Leigh PG, CHG

Technology Applications Manager In Situ Biological and Reductive Technologies Evonik Active Oxygens, LLC San Francisco, CA, USA daniel.leiqh@evonik.com +01 925 984 9121

Or stop-by our booth #300

Questions?

Panel Discussion: Science, Application and Monitoring and illustrative Case Studies of Biogeochemical Remediation. Thursday, 10:30 E Session Walter A-B Level 3.

