

Phytoremediation is a low cost, green remediation technology for 1,4-dioxane

Research Paper | 🔂 Full Access

Chlorinated

Solvents

Phytoremediation of 1,4-Dioxane by Hybrid Poplar Trees

Eric W. Aitchison, Sara L. Kelley, Pedro J.J. Alvarez, Jerald L. Schnoor

First published: 01 May 2000 | https://doi.org/10.2175/106143000X137536 | Citations: 72

"76 to 83% of the dioxane taken up by poplars was transpired from leaf surfaces"

	Remediation/ Devel Treatment st		Development status Effectiveness	
	Technology	GW	VZS	
	Monitored natural attenuation (includes physical, chemical, and biological mechanisms)	E	NA	May be effective at reducing 1,4-D at lower starting concentrations (e.g., <500 μg/L), depending on the time available and relevant attenuation mechanisms
	Phytoremediation	F	F	Effective for a range of starting concentrations (up to >2,500 μg/L)
	In situ chemical oxidation: Sodium persulfate/ potassium persulfate	F	E	Effective at oxidizing 1,4-D to <1 μg/L for high starting concentrations (500 to >2,500 μg/L), depending on proper design and implementation
	Chlorinated Solvents			ITRC 2027
	C-C-HH			
IOWA				

Water Research Volume 35, Issue 16, November 2001, Pages 3791-3800

Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with *amycolata* sp. CB1190

Sara L. Kelley¹, Eric W. Aitchison¹, Milind Deshpande², Jerald L. Schnoor¹, Pedro J.J. Alvarez¹ 2

Pseudonocardia dioxanivorans CB1190

IOWA

Mycobacterium dioxanotrophicus PH-06

Trees bioaugmented with *Mycobacterium sp.* PH-06 sped treatment of 1,4-D to ~4 ug/L

Science of the Total Environment 744 (2020) 140823

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Bioaugmenting the poplar rhizosphere to enhance treatment of 1,4-dioxane

Reid Simmer^{a,*}, Jacques Mathieu^b, Marcio L.B. da Silva^b, Philip Lashmit^c, Sridhar Gopishetty^c, Pedro J.J. Alvarez^b, Jerald L. Schnoor^a

^a Department of Civil and Environmental Engineering, College of Engineering, The University of Iowa, Iowa City, IA, USA

ated

SCAN ME

IOWA

^b Department of Civil and Environmental Engineering, College of Engineering, Rice University, Houston, TX, USA

^c Center for Biocatalysis and Bioprocessing, Office for the Vice President for Research and Economic Development, University of Iowa Research Park, The University of Iowa, Coralville, IA, USA

Science

Check for updates

However, metabolic degraders have significant kinetic limitations

Strain	q _{max} (mg 1,4-dioxane/mg protein/day)	K _s (mg 1,4-dioxane /L)	Yield (mg protein/ mg dioxane)	S _{min} (µg 1,4-dioxane /L)	Reference	
<i>Pseudonocardia dioxanivorans</i> CB1190	1.65 ± 0.05	6.32 ± 0.22	0.45 ± 0.09	487.14 ± 173.45ª	Barajas-Rodriguez et al. (2018)	
<i>Mycobacterium dioxanotrophicus</i> PH-06	Not reported	78.00 ± 10.00	0.16	Not reported	He et al. (2018)	lization
Chlorinated H H H C C C C C C C C						

Vitamin B1 (thiamine) supplements accelerate growth in *Rhodococcus ruber* 219

Vitamin B1 (thiamine) supplements accelerate growth in *Rhodococcus ruber* 219

Rhodococcus ruber 219, when supplemented with Vitamin B1, has the lowest K_s and S_{min} reported for dioxane-metabolizing bacteria to date, degrading 100 µg/L dioxane to below 0.1 µg/L.

Strain	q _{max} (mg 1,4-dioxane/mg protein/day)	K _s (mg 1,4-dioxane /L)	Yield (mg protein/ mg dioxane)	S _{min} (µg 1,4-dioxane /L)	Reference	
<i>Pseudonocardia dioxanivorans</i> CB1190	1.65 ± 0.05	6.32 ± 0.22	0.45 ± 0.09	487.14 ± 173.45ª	Barajas-Rodriguez et al. (2018)	
<i>Mycobacterium dioxanotrophicus</i> PH-06	Not reported	78.00 ± 10.00	0.16	Not reported	He et al. (2018)	lizatio
<i>Rhodococcus ruber</i> 219	5.00 ± 0.24	0.015 ± 0.03	0.24 ± 0.02	0.49 ± 1.16	Simmer et al. (2021)	() ()
				Ļ		

R. ruber 219 repeatedly degraded ~100 μ g/L dioxane to <0.35 μ g/L

Time (d)

Current Work

 Does bioaugmented phytoremediation with *R. ruber*219 accelerate treatment of 1,4-D to <1 µg/L?

• Can treatment of 1,4-D be sustained in long term flow-through experiments?

Flow-through experiments were used to emulate environmentally relevant field-scale conditions

Treatment	Soil Substrate	Replicates
Glass Rod Control	Perlite	1
Tree Only	Perlite	2
<i>R. ruber</i> 219 only	Perlite	2
Tree + <i>R. ruber</i> 219	Perlite	3
Glass Rod Control	Soil	1
Tree Only	Soil	2
<i>R. ruber</i> 219 only	Soil	2
Tree + <i>R. ruber</i> 219	Soil	3
		Total: 16

Perlite reactors bioaugmented with *R. ruber* achieved the lowest effluent concentrations

However, trees with *R. ruber* 219 was best on a mass removal basis (biodegradation + phytoextraction/evapotranspiration)

qPCR Results Show Reduced Washout of *R. ruber* 219 Gene Copies in Planted Reactors

Dioxane effluent concentrations were somewhat higher in soil compared to perlite media

Mass removal by trees with *R. ruber* 219 in soil was significantly higher than bio alone

Significantly lower washout of *R. ruber* 219 gene copies in Planted Soil Reactors vs. Unplanted (tree roots help)

Major Takeaways

- ✓ Bioaugmented phytoremediation with *R. ruber* 219 accelerates treatment of 100 µg/L influent dioxane concentrations to near 1 µg/L
- ✓ Sustained treatment (≥50% degradation) for 44 days

Other observations

- Trees reduce washout of bioaugmented organisms
- Extended HRT improves bioremediation
- Trees capable of complete transpiration (zero discharge)
- Alternative treatment schemes may improve treatment (in-series)
- Repeated bioaugmentation may be necessary

Bioaugmented phytoremediation offers a green solution

ESTCP Demonstration at former Twin Cities Army Ammunition Plant, 2023-2025

ESTCP Demonstration at former Twin Cities Army Ammunition Plant, 2023-2025

Acknowledgements

- Emily Jansen, Kyle Patterson, Chris Knutson (Ulowa)
- Lou Licht Ecolotree, Inc.
- Joel Burken MS&T
- Linda Albrecht USAEC
- Pedro Alvarez, Jacques Mathieu Rice University
- SERDP Project ER-2719
- ESTCP Project ER21-5096
- NSF Integrative Graduate Education Research Traineeship (IGERT) [Grant # 0966130]

IIHR—Hydroscience and Engineering

Backup Slides

R. ruber 219 rapidly degrades 5 mg/L dioxane to <1µg/L

35

*R. ruber*219 rapidly degrades 5 mg/L dioxane to <1µg/L

In-series arrangement tested to improve long-term treatment

37

In-series arrangement significantly improves effluent concentration from second reactor

Essential nutrient thiamine (50 ppb) was absent from effluent likely due to sorption

