

Selection of Drilling Method for Effective Amendment Delivery

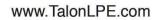
Robert Meyer – Vice President Drilling Operations Talon/LPE, Ltd. Session A8 – Innovative and Efficient Amendment Delivery Strategies

What is the problem?

- The most appropriate drilling method is not always selected for placement of remedial amendments
- Thorough review of actual lithologic conditions, project goals, and remedial amendment design are required
- Appropriate assessment of cost and risk must be completed
- If refusal, then what?

Common Remedial Drilling Methods

- Direct push
- Solid flight auger
- Hollow stem auger
- Sonic


Uncommon Remedial Drilling Methods

- Air rotary
- Mud rotary
- Combined approaches

Direct Push

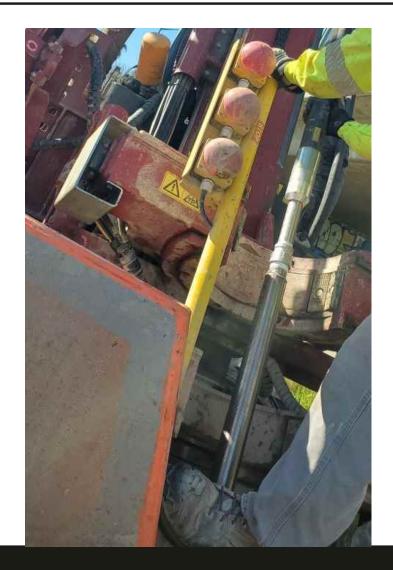
- Generally fastest and most cost effective
- Prone to difficulty in harder formations
- Can be problematic in flowing sands or high pressure water bearing formations with high organic silt content

Solid Flight Auger

- Reduces challenges in difficult but consolidated formations
- Generally requires an additional step, open borehole only
- Often used to "pre drill" for later direct push applications

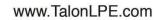
Hollow Stem Auger

- Used in formations where direct push is ineffective and borehole stability is a concern
- Waste generation is high
- Borehole interface is large, but borehole is large leading to increased cost



Sonic / Wireline Coring

- Very effective method, generally expensive and large footprint
- Requires additional steps
- Creates a very controllable injection environment



Air/Mud Rotary

- Very fast rate of penetration, generally expensive and messy
- Air rotary only used in high stability formations
- Mud rotary must be carefully evaluated due to increase in variables

Selection Criteria

- Past performance? (has anything failed previously?)
- Known lithologic conditions?
- Predictable lithologic conditions? (i.e. widespread flowing sands in a geographic area?)
- Conditions change expected based on remedial method? (i.e. high volumes or high flowrates anticipate to create subsurface issues?)
- Site accessibility?
- Noise and work hours issues?
- Ability to leave equipment onsite overnight?

Remedial Approach

- Often approach of remediation is decided prior to decision on how any remedial amendments will be delivered.
- Delivery method needs to be understood, or options to delivery method needs to be understood, prior to approach selection
- Chemical compatibility may create delivery method issues
- Involve your contractor early!

	Soft Clays & Silts	Firm Clays	Loose Sand	Cemented Sands	Gravels & Cobbles	Soft Rock – Weathered Limestone, Shale, etc	Hard Rock – Competent Limestone, Granite, etc	Conglomerate
Direct Push	Good	ОК	Good	No	No	No	No	No
Solid Flight Auger	Good	Good	No	ОК	No	No	No	No
Hollow Stem Auger	Good	Good	Good	ОК	ОК	No	No	No
Sonic/Coring	ОК	ОК	Good	Good	Good	Good	ОК	ОК
Mud Rotary	Good	Good	Good	Good	Good	ОК	ОК	ОК
Air Rotary	ОК	ОК	No	ОК	No	Good	Good	Good
Switch to wells								

Conclusions / Questions

- One or more drilling methods can be utilized on the same project site.
- Drilling methodology should be understood prior to finalizing remediation compound of choice to ensure application issues are identified.
- Lithologic changes during and after remediation compound installation may create second order impacts to overall project