IN-SITU BIOREMEDIATION OF 1,4-DIOXANE IN MIXED PLUME WITH METABOLIC BIOAUGMENTATION AND COMETABOLISM.

Fritz Krembs, P.E., P.G. Trihydro, Golden, CO fkrembs@trihydro.com

BATTELLE BIOSYMPOSIUM 2023

ACKNOWLEDGEMENT OF PROJECT TEAM

- Trihydro Kyle McDonald, Mitch Olson, George Mathes, Kyle Power
- SiREM Sandra Dworatzek, Phil Dennis, Ximena Druar, Jeff Roberts
- GeoEnviroTech Rafael Diaz, Juan Negron
- Pace / PRS&T Juan Redondo,
 Vincente Perez
- H2K Technologies Mike Keilen

SITE BACKGROUND

- Northern Puerto Rico
- 1860s Sugar Mill
- 1970s Industrial
- 2008 Fire

SITE HYDROGEOLOGY

- Unconsolidated Alluvium
- Water Table Unit
 - 30 to 40 ft thickness
 - Silts & Sands
 - K = 0.4 ft/day
- Sand Unit
 - 5 to 15 ft thickness
 - Sand & Gravels
 - K = 30 ft/day

VOC AND 1,4-DIOXANE MAPS

Water Table (shallow)

Benzene

Sand Unit (deeper)

1,2-DCA

Ethylbenzene Vinyl Chlorid

5

1,4-Dioxane

6

BASELINE ANALYTICAL DATA

- Reducing conditions
 - Elevated iron
 - Reduced sulfate
 - Methane production
 - Anthropogenic carbon source

units ug/L except as noted

	Upgradient	Source Area	Source Area			
	(Sand Unit)	(Water Table Unit)	(Sand Unit)			
	MW-26S	MW-4	MW-15S			
1,4-Dioxane	4	542	283			
Benzene	ND	383	150			
Toluene	ND	632	12			
Ethylbenzene	ND	2,780	8			
Xylenes, Total	ND	21,900	7			
Trichloroethene	ND	ND	ND			
cis-1,2-Dichloroethene	ND	16	0			
Vinyl Chloride	ND	18	1			
1,2-DCA	ND	ND	1.5			
1,1-DCE	ND	ND	0.7			
Carbon Tetrachloride	ND	ND	ND			
Chloroform	ND	303	ND			
Methylene Chloride	ND	ND	ND			
Iron, Dissolved (mg/L)	ND	27	5.6			
Sulfate (mg/L)	12.9	ND	ND			
Methane (mg/L)	ND	2.2	2.1			
Total Org. Carbon (mg/L)	1.2	98	14			

BASELINE ANALYTICAL DATA

- TEX and chlorinated compounds attenuated under ambient conditions
- 1,4-dioxane and benzene partially attenuated

		Source Area	Source Area
		(Water Table Unit)	(Sand Unit)
		MW-4	MW-15S
	1,4-Dioxane	542	283
	Benzene	383	150
	Toluene	632	12
	Ethylbenzene	2,780	8
	Xylenes, Total	21,900	7
	Trichloroethene	ND	ND
ed	cis-1,2-Dichloroethene	16	0
uated under	Vinyl Chloride	18	1
	1,2-DCA	ND	1.5
	1,1-DCE	ND	0.7
	Carbon Tetrachloride	ND	ND
	Chloroform	303	ND
penzene	Methylene Chloride	ND	ND
ed	Iron, Dissolved (mg/L)	27	5.6
	Sulfate (mg/L)	ND	ND
	Methane (mg/L)	2.2	2.1
units ug/L except as noted	Total Org. Carbon (mg/L)	98	14

BASELINE MICROBIAL DATA

- Chlorinated solvent biomarkers at high concentrations (e.g., DHC, DHG, DHB, DSB)
- 1,4-Dioxane biomarkers not detected (ALDH, DXMO)
- Propane monooxygenase
 (PMO) detected at low levels
- Groundwater 27°C

BENCH TESTING

- Performed by SiREM in Guelph
- 4 treatment sets
 - Sterile control
 - Aerobic (unamended)
 - Aerobic metabolism (DXO-88™)
 - Aerobic cometabolism (propane)
- Site soil and groundwater
- 02/propane/N2 ~weekly
- Monitored for 1,4-dioxane, DO, ORP, methane, propane

BENCH TESTING

- 0-6 weeks: similar across the board
- 6-14 weeks: 90+% declines in
 DXO-88[™] & propane treatments
- ORP, propane, methane data supported expected conditions
- Bioaug.: dxmB, ALDH, PMO peaked at 29 days
- Comet.: dxmB, PMO peaked at 100 days
- Conclusion: proceed to pilot with bioaug. and cometabolism

PILOT TEST - GOALS

- Evaluate/demonstrate treatment of 1,4-dioxane
- Assess effect on cVOCs
- Design parameters
 - ROI
 - Flow rates
 - Reagent dosing

PILOT TEST - IMPLEMENTATION

- Side-by-side aerobic treatment zones
- Common biosparge skid with telemetry
- Bioaugmentation with SiREM DXO-88[™]
- Cometabolism with propane

BIOSPARGE SYSTEM

- Flow: 3 to 7 scfm
- Pressure: 20 to 25 psi
- 30-minute pulses each well
- Remote monitoring/ control via telemetry

PROPANE ADDITION

- HD5 grade odorized propane
 - >90% propane, <5% propylene,
 <2.5% heavier hydrocarbon, and
 <0.0025% ethyl mercaptan (see Chu et. al 2018)
- 15% to 28% of LEL
- 0.4 lbs/well/day at comet. wells
- Pulsing to provide alternating conditions (growth vs. "hungry")
- June to August 2022 only

DXO-88TM BIOAUGMENTATION

PERFORMANCE ASSESSMENT

- 1,4-Dioxane
- Biomarkers
- CSIA
- VOCs

1,4-DIOXANE

- June 7, 2022 Startup
- Aug 10, 2022 Propane stopped
- Aug 19, 2022 DXO-88™
- Sept 2022 Offline for three weeks due to Fiona

BIOMARKERS qPCR

- June 7, 2022 Startup
- Aug 10, 2022 Propane stopped
- Aug 19, 2022 DXO-88™
- Sept 2022 Offline for three weeks due to Fiona

	Date	dxmB gene (copies/L)	ALDH gene (copies/L)	PMO gene (copies/L)		
MW-5	7/28/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-5	11/4/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-5	2/20/2023	U (3x10 ³)	U (3x10 ³)	U (3x10 ³)		
MW-46	7/28/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-46	11/4/2022	U (3x10 ³)	U (3x10 ³)	U (3x10 ³)		
MW-46	2/20/2023	U (3x10 ³)	U (3x10 ³)	U (3x10 ³)		
MW-4	7/28/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-4	11/4/2022	3X10 ³ J	U (5x10 ³)	7X10 ⁴		
MW-4	2/20/2023	U (3x10 ³)	U (3x10 ³)	1X10 ⁴		
MW-15S	7/28/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-15S	11/4/2022	U (5x10 ³)	U (5x10 ³)	5X10 ⁴		
MW-15S	2/20/2023	U (3x10 ³)	U (3x10 ³)	U (3x10 ³)		
MW-47	7/28/2022	U (5x10 ³)	U (5x10 ³)	U (5x10 ³)		
MW-47	11/4/2022	U (3x10 ³)	U (3x10 ³)	U (2x10 ³)		
MW-47	2/20/2023	U (3x10 ³)	U (3x10 ³)	1X10 ⁴		

BIOMARKERS NGS

- 1,000s of genetic sequences
- Species / genus names (not shown)
- Functional groups >1%

SiREM

BIOMARKERS NGS

Functional Group

- Three time points
- DXO-88™ signature

Sirem

NGS 1,4-DIOXANE BIOMARKERS

inogenesis_by_reduction

- Very slight increase
- Baseline 1.1%
 in single
 sample
- 1.3% to 4.2%

SiREM

dioxane_degradation -	82.5	5 81.1	82.8	191							123		3				42			
_ammonia_oxidation =											0					40.3				
_chemoheterotrophy -	82	9	8				101	66	30	•	9.3	101	9.3	0	1)	6.8	14.6		8.3	
carbon_degradation -																				2
Chemoheterotrophy -	82		8	24.2	24.6	25.8	6)	16.9	12.5	Ð	20.6	24.4	27.2	22.7	23.1	69	28.2		14.4	21.3
Fermentation -																				32
carbon_degradation -						20					3,8	23		3,6	6.5	101			3,3	18
hic_methanogenesis				9.3	9.3		37.4	18.9	84	25.9	69			6.0	9.9			26.3	2,8	6.4
fanganese_oxidation =								12	18.4		8.3		0	6.5			38		17.8	
Methanogenesis *				9.3	9.3		37.4	18.9	14.8	25.9	69			6.4	(0.8			26.3	26.2	7.8
Methanogenesis_by_co2_reduction_with_h2 =							6.1	78		25.9				3,8				26.3		
y_reduction_of_methyl_compounds_with_h2 -				9.3	9.1		0	13	82		0			2,6	9.7				2,8	_
Methanol_oxidation =				14.2	15.1	6					191		17.9	14.5	42		13.6			
Methanotrophy =						20					33	23		1.6	63	101			13	18
Methylotrophy -				24.2	24.6	25.3	4	•	03		1	23.2	17.9	20.8	19.4	101	13.6		0	18
Nitrate_reduction -								1.5	22											
Nitrate_respiration -	_	DXC)-			Ju	ly	135	22				No	V				Fel	C	_
Nitrification -		88 [•]	M			20	22				0	2	202	22		40.3	2	202	3	
Nitrogen_fixation -											٥				6				8.5	52
Nitrogen_respiration -								105	22											_
Nonphotosynthetic_cyanobacteria -	9		101						10.9		191		9.7	2,8	•	2.8	16.4	21.1	3,3	
Reductive_dechlorination -				5,5	6,5		22	27	0		1.5		0				6.6		3,3	
			1)±	-	-			-				1.		/	-	-	-	-	-

NGS REDUCTIVE DECHLORINATION

đ

- Decreased abundance
- Still present

SiREM

NGS **METHANOGENSIS**

 Hydrogen and carbon both show fractionation over time

Unfractionated range from Bennett et al. 2017 ER-2535

CSIA

Sirem

δ13C indicates degradation despite similar 1,4-dioxane concentrations

Baseline values are literature estimates, not measured data $\delta 13C + -0.5^{\circ}/_{\circ\circ}$ (Bennett *et al.* 2017 ER-2535)

CHLORINATED COMPOUNDS

- Concentrations of some chlorinated compounds have increased
- Changes due to perturbations in reductive dechlorination processes

Basalina Data	Source Area	Source Area				
Dasenne Data	MW-4	MW-15S				
1,4-Dioxane	542	283				
Benzene	383	150				
Toluene	632	12				
Ethylbenzene	2,780	8				
Xylenes, Total	21,900	7				
Trichloroethene	ND	ND				
cis-1,2-Dichloroethene	16	0				
Vinyl Chloride	18	1				
1,2-DCA	ND	1.5				
1,1-DCE	ND	0.7				
Carbon Tetrachloride	ND	ND				
Chloroform	303	ND				
Methylene Chloride	ND	ND				
Iron, Dissolved (mg/L)	27	5.6				
Sulfate (mg/L)	ND	ND				
Methane (mg/L)	2.2	2.1				
Total Org. Carbon (mg/L)	98	14				

units ug/L except as noted Total Or

CONCLUSIONS

- 1,4-Dioxane concentrations reduced as result of pilot test
- Bioaugmentation culture successfully applied at field scale
- Difficult to discern bioaugmentation versus cometabolism
- Aerobic conditions have affected MNA processes

QUESTIONS / DISCUSSION

WHAT WHY WHERE WHEN WHO HOW

LOC

CONTACT INFORMATION

Fritz Krembs, PE, PG Trihydro Corporation Golden, CO <u>fkrembs@trihydro.com</u>
