2023 International Symposium on Bioremediation and Sustainable Environmental Technologies May 8-11, 2023 | Austin, Texas

Lysimeters to Evaluate PFAS Leaching at AFFF-Impacted Sites

CDM Smith C. Schaefer Y. Fang Colorado School Mines C. Higgins S. Shea N. Gonda C. Zhang

May 9, 2023

Objectives

Approach

PFAS soil and porewater data at six AFFF-impacted sites

- 5 soil cores (3 ft x 3 ft)
 - high-resolution soil sampling
 - cores for bench-scale testing
- 3 installed lysimeters (3 rounds of porewater sampling)
- Target and suspect PFAS analyses

Parallel bench-scale testing

- Batch desorption testing (soil slurry with 3:1 Liquid:Solid ratio)
- Porewater sampling using collected soil cores

Bench-Scale Soil Core

PFAS Soil Concentration Profiles (Semi-Arid)

PFAS Soil Concentration Profiles (Non-Arid)

Field Lysimeters: PFAS Concentrations

PFAS Porewater Fluorine Distribution (% Fluorine Basis)

PFAAs Target precursors Suspect precursors

Apparent K_d Values

 $K_{\rm d}$ based on in situ porewater and soil data at lysimeter depth

Monitoring&Remediation Practical Applications Limitations of Current Approaches for Predicting Groundwater Vulnerability from PFAS Contamination in the Vadose Zone by Matt Rovero, Diana Cutt, Rachel Griffiths, Urszula Filipowicz, Katherine Mishkin, Brad White, Sandra Goodrow and Richard T. Wilkin •

PFAS Attachment to Natural Colloids

Porewater: Field Lysimeters vs. Equilibrated Soil Cores

- Agreement between field and core samples suggests local equilibrium
- Short-chained PFAS less in field sample results in:
 - dilution
 - non-equilibrium

Porewater: Field Lysimeters vs. Equilibrated Soil Cores

Plan to re-install and sample lysimeters under low recharge

Porewater: Field Lysimeters vs. Equilibrated Soil Cores

Reasonable agreement, but long-chained PFAS are much greater in the core sample

Small Grain/Pore Sizes Enhance Air-Water Interfacial Area

AFA

Wetting the soil prior to the core porewater extraction in the EC2 soil has a substantial impact on the collapse of air-water interfaces

PFOS Phase Behavior

Site	PFOS porewater concentration (µg/L)	Dissolved PFOS concentration in soil-water slurry (µg/L)
AFA	2.2	0.084
Peterson	6.4	0.10
Jax	730 [*]	13
Randolp h	36	1,000
EC2	13	140

* Using soil core porewater

- These increases for RAN and EC2 are not observed for short-chained PFAS
- RAN and EC2 have substantial fraction of fine particles

PFOS Phase Behavior

$$M_T = M_s + M_w + C_w a K_{aw}$$

Site	K _{aw} based on mass balance (cm)	Approximate K _{aw} based on interfacial tension data (cm)
Lakehurst	0.18 (confirmed using porewater sorption test)	Langmuir: 0.05 Freundlich: 0.25
Randolph	$0.027 \le K_{aw} \le 0.95$	Langmuir: 0.05 Freundlich: 0.15
EC2	$0.013 \le K_{aw} \le 3.4$	Langmuir: 0.02 Freundlich: 0.02
AFA	≤ 0.012	Langmuir: 0.05 A Freundlich: 0.5
Peterson	≤ 0.0008	Langmuir: 0.05 A Freundlich: 0.4
Jax	≤ 0.0025	Langmuir: 0.02 Freundlich: 0.02

PFOS sorption at the air-water interface is often less than expected

Reasonable repeatability among lysimeters

Target and suspect precursors in porewater

Local equilibrium for long-chained PFAS

- Exceptions during high percolation?
- Exceptions for more complex geologies?

Impacts of air-water interfacial sorption are unclear

- Grain/pore size distribution matters
- PFAS accumulation at the air-water interface may be inhibited in porewater

Acknowledgement

Project ER20-5088

Thank You

Charles Schaefer, PhD schaeferce@cdmsmith.co m

Connect with me on LinkedIn!