

Adsorbents Treatability Evaluation for PFAS Removal from Groundwater Infiltrating into a Chrome-Plating Facility Basement

Francisco Barajas-Rodriguez, PhD francisco.barajas@aecom.com

Delivering a better world

Battelle - International Symposium on Bioremediation and Sustainable Environmental Technologies May 8-11, 2023 | Austin, Texas

Agenda

- 01 Introduction
- 02 Study Objectives
- 03 Technical Approach
- 04 Results
- 05 Conclusions and Next Steps

Introduction

Introduction – Site Background

- Site is an old plating facility that operated from the 1930s to 2007
- Waste containers containing cyanide, zinc cyanide, nickel chloride and other chemicals found in 2015
 - Followed by a time-sensitive removal strategy
- Chlorinated solvents and PFAS detected at the site
- Groundwater is infiltrating into a basement
 - 1,4-dioxane, chlorinated solvents, metals, and PFAS
- Focus of this study was on PFAS treatment

02 Study Objectives

General Objective: Evaluate efficacy of sorbent treatment technologies for PFASladen basement water from a metal plating manufacturing site.

Specific Objectives:

- Screen for various adsorbent products that may remove PFAS from the water matrix
- Further evaluate the effectiveness of select adsorbents that show the highest potential for PFAS removal under flow-through conditions

03 Technical Approach

Overview of General Approach

Batch Isotherms Six Doses / Sorbent Cyclodextrin GAC 1 GAC 2 Single Use IXR 1 Regenerable IXR 1 Nano Iron Oxide Single Use IXR 2 Regenerable IXR 2

Column Tests

- 1. Cyclodextrin
- 2. Single Use IXR 1
- 3. Regenerable IXR 1

Overview – Adsorbent Media Studied

Ion Exchange Resins (IXRs)

- Single Use IXR 1
 - Polystyrene crosslinked with divinylbenzene
 - Complex amino functional group
- Single Use IXR 2
 - Tributylamine functionalized chloromethylated copolymer of polystyrene in the chloride form
- Regenerable IXR 1
 - Polyvinyl benzyl triethyl ammonium chloride
 - Regenerable via methanol extraction
- Regenerable IXR 2
 - Quaternary amine divinylbenzene/styrene copolymer, chloride ion form
 - Regenerable via methanol extraction

Ion Exchange Adsorption Woodard et al. (2017)

Overview – Adsorbent Media Studied

Granular Activated Carbon (GAC)

- Two commercial GAC products: GAC 1 and GAC 2
- Both are bituminous coal-based

Cyclodextrin

- Cross-linked cyclodextrin polymer
- Cellulose acetate
- Regenerable with ethanol-based solvent extraction

Nano Iron Oxide

- Nanoporous Fe₂O₃
- Used to remove phosphate and heavy metals
- Dual function: absorption and adsorption —

GAC Adsorption Armenante (1991)

Phase 1 – Batch Isotherms

Screened various sorbent media

- Three regenerable sorbents
 - Cyclodextrin
 - Regen IXR 1
 - Regen IXR 2
- Five single-use sorbents
 - GAC 1
 - GAC 2
 - Single Use IXR 1
 - Single Use IXR 2
 - Nano Iron Oxide

Tested six sorbent doses to equilibrium

• 10 to 2,000 mg/L

Determined adsorption capacity, q

$$q = \frac{M_{PFAS,S}}{M_{S}} = \frac{V_{W}(C_{W,0} - C_{W,E})}{M_{S}}$$

 $M_{PFAS,S}$ = Mass of PFAS sorbed M_S = Mass of sorbent V_W = Volume of water $C_{W,0}$ = Initial PFAS concentration in water $C_{W,E}$ = Equilibrium PFAS concentration in water

Phase 2 – Rapid Small Scale Column Tests (RSSCTs)

- Media selected based on batch testing results from Phase 1 and consultation with client
- Design based on empty bed contact time (EBCT)
 - Desire for low footprint treatment system = short EBCT
 - Assumed 5 minutes of EBCT for adsorbents tested
- Volume of water to test = ~10 gal/column = ~50,000 bed volumes
- Three RSSCT columns

0	C	0	0	2	0	0	¢	0	0	Q	0	0	1	0	C	e	5	-6-	-	-			×
6	6	0	0		c	0	C	G		0	۵		0	٥	0	ô	۲	0	0	0	0	0	0
	c	0	6	1.	0	0	0	0	0	ø	0	ale	0	0	0	•	Ö,		9	0	D	P	0
		,	,III	6	0	0		0		0		all	0	~	6	e.	ø	₽.	•	9	•	P.	
			400									-	6				0	•	٠		-		
	•	0		7.	-			6							0	•	0			•		þ	0
	•	•						Ĩ				-	he		0		0		0		-	-	10
	0	0	4	10	0							N.		0	0	0	0	0	0	0	0		10
	¢	6	6	0	0	0	0	0	0	0						6,	0	(1)	0	0	0	0	
6	0	6	¢	0	0	0	0	0	0	0	0	1				0			0	-	0		16
							Influent					Effluent											
Sorbent						Samples					Samples												
						Gampiee						Campico											
Cyclodextrin							3					10											
Single Use IXR 2							3				10												
Regen IXR 2							3				10												

Phase 2 – Rapid Small Scale Column Tests (RSSCTs)

04 Results

Results – Baseline Characterization

- PFAS dominated by perfluorooctanoic sulfonate (PFOS) and perfluoroethyl cyclohexane (PFECHS)
- Water samples analyzed: basement water (field-collected), raw water (as-received), filtered water (two sampling events)
- Total PFAS: 15,123 ng/L to 19,430 ng/L

Results – Baseline Characterization

- Branched and linear isomers analyzed for PFOA, PFOS, and PFECHs
- Distribution changed between raw and filtered water for PFOS only
- Total organic carbon (TOC) = 11 mg/L
- Volatile organic compounds (VOCs) detected
 - cis-1,2-dichloroethane = 305 µg/L
 - 1,1-dichloroehene = 295 µg/L
 - 1,1,1-trichloroethane = 135 µg/L

Compound	Unfiltered Raw Water	Filtered Water Event 1	Filtered Water Event 2
PFOA	36.8%	38.1%	45.1%
PFOS	93.9%	57.8%	57.1%
PFHxS	18.6%	20.0%	16.9%

Results - Isotherms

Results - Isotherms

Equilibrium Concentration

Ranking	Sorbent	PFOA (ng/mg)	PFOS (ng/mg)	PFECHS (ng/mg)	
1	Cyclodextrin	0.76	85.9	195	
2	Single Use IXR 1	0.33	17.3	165	
3	Regen IXR 1	0.21	8.9	155	
4	Single Use IXR 2	0.36	30.4	65	
5	GAC 2	0.26	30.4	50	
6	Regen IXR 2	0.16	30.4	50	
7	GAC 1	0.07	2.0	35	
8	NIO	0	0	0	

aecom.com

Results - RSSCT

- All columns showed breakthrough of total PFAS concentrations
- Influent concentrations were variable, but within 20% of the average
- The cyclodextrin column showed higher effluent concentrations

Results - RSSCT

- Retention of PFOA by the cyclodextrin and Regen IXR 2 was similar
- Retention of PFOS by the two IXRs was similar
- Removal of PFAS by the cyclodextrin was limited by the short EBCT

Results - RSSCT

		At 5%	of influent, Tota	I PFAS	At 8 ng/L of PFOA					
Metric	Unit	Cyclodextrin	Single Use IXR 2	Regen IXR 2	Cyclodextrin	Single Use IXR 2	Regen IXR 2			
Bed Life	days	4,661	9,948	9,842	2,689	9,938	3,077			
Water Treated	L	9.5	20.3	20.5	5.5	20.2	6.4			
Bed Volumes	-	26,000	52,051	55,966	15,000	52,000	17,500			
Specific Throughput	L/Kg	42,000	87,523	93,343	24,500	87,500	29,000			
Sorbent Usage Rate	Kg/L	2.38E-05	1.14E-05	1.07E-05	4.08E-05	1.14E-05	3.45E-05			

- Performance metrics on effluent Total PFAS
- Criteria: 8 ng/L of PFOA vs. 5% of influent concentration (~500 ng/L)
- PFOA might be the limiting factor due to its lowest threshold concentration
- The single-use and regenerable IXR had long breakthrough values
- The cyclodextrin has a higher selectivity and capacity for PFAS adsorption, but it was limited by the short EBCT in RSSCT

Conclusions and Next Steps

Conclusions

From Isotherms

- Up to 99.97% removal of most PFAS \rightarrow PFOA, PFOS, and PFECHS.
- Removal efficiencies at 10 mg/L of adsorbent from 3.4% for GAC 1 to 58% for the Cyclodextrin.
- Adsorption capacity: cyclodextrin > Single Use IXR 2 > Regen IXR 2
- NIO not effective for PFAS removal.
- No TOC removal by the cyclodextrin \rightarrow high selectivity towards PFAS.
- TOC was removed by GACs, and partially removed by ion exchange resins.

Conclusions

From RSSCTs

- Performance Single Use IXR 2 > Regen IXR 2 > Cyclodextrin
 - The EBCT of 5 min was not enough to maximize the cyclodextrin's adsorption capacity.
- Short-chain PFAS such as PFBA and PFPeA showed poor retention times.
- PFECHS and PFOS \rightarrow no breakthrough in IXR columns.
- PFOA was the first compound to breakthrough, despite an influent concentration two orders of magnitude lower than PFOS and PFECHS.
- TOC was poorly removed by the three adsorbents.
- All adsorbents, including the cyclodextrin, exhibited sufficient specific throughput to treat 10,000 gallons of basement water.

Next Steps

Considerations for regenerable media

- Ethanol (Cylodextrin) and Methanol (Regen IXR 1).
- Reliability/feasibility of media regeneration

Scaleup, cost, and other practical considerations

- Treatment goals, as these could be evolving quickly
- TOC and co-contaminants treatment
- Media Costs: Single Use IXR 1 = Cyclodextrin
- Disposal vs regeneration

Potential Pilot-Scale Test

- Cyclodextrin and/or Single Use IXR
- Volume = 10,000 gallons of basement water to treat
- Flowrate = 1 2 gallons per minute

Thank You!

francisco.barajas@aecom.com

