

Improved Cost and Performance of PFAS Groundwater Treatment using a Carbon-Based Micro-adsorbent and Ceramic Separations Technology

Terence Reid, P.E. - Aqua-Aerobic Systems, Inc. <u>treid@aqua-aerobic.com</u>

Joseph Quinnan, P.E. – Arcadis U.S. joseph.quinnan@arcadis.com

Vivek Pulikkal, PhD. – Arcadis U.S. <u>Vivek.Pulikkal@arcadis.com</u>

Christopher Bellona, PhD. – Colorado School of Mines chellona@mines.edu

ESTCP

Technical Objectives

Demonstrate and validate application of the Micro-Adsorbent/Membrane treatment approach to reduce the total life cycle cost of PFAS-impacted groundwater treatment by evaluating:

- 1) Broad spectrum and short-chain PFASs treatment selectivity;
- 2) PFAS treatment performance in presence of co-contaminants common at DoD Fire Training Areas; and,
- 3) Cost and performance requirements related to concentration and treatment of the retentate.

IMPROVED LONGEVITY AND
SELECTIVITY OF PFAS
GROUNDWATER TREATMENT
USING SUB-MICRON POWDERED
ACTIVATED CARBON (SPAC)
AND CERAMIC MEMBRANE
FILTRATION (CMF)

ER19-B3-5181
Version 2
Joseph Quinnan, Arcadis
Terence Reid, Aqua-Aerobic Systems, Inc.
Vivek Pulikkal, Arcadis
Chris Bellona, Colorado School of Mines

December 2022

AquaPRSTM PFAS Removal Technology

Micro-adsorbent

AquaPRS PFAS Removal Technology

Micro-adsorbent

System Layout

- Sorbent is Batch Loaded
- 2-4% Solids
- 1-4 week replacement interval
- No waste between replacements

Waste Disposal

Thickening Prior to Replacement

100 gpm example: 7-Day Replacement

DoD's Environmental Research Programs

Horsham AGS: Surface Water

Willow Grove NAS: Groundwater

Horsham Air Guard Station

Performance Assessment – Surface Water

Surface Water Treatment

Pre-Treatment Requirement

- Influent turbidity = 1 to 100 NTU
- Influent TOC = 2 to 4 mg/L
- Filter effluent turbidity = 1 to 4 NTU
- Final turbidity = 0.04 to 0.06 NTU

Cloth Media Filter

Horsham Performance Assessment

Test Conditions

In Summary:

- 2 Trains (A & B)
- 13 Tests
- 2 Conditions/Test
- 1 & 2 Stage
- Quantify Performance

Table 8. Test Conditions Evaluated at the Horsham AGS Pilot Study.

Test	Operating Mode	Hydraulic Detention Time (min)	Sorbent Mass (g)	Sorbent Density (g/L)	Flow Rate (L/min)
1A	1-Stage	60	20	0.5	0.67
1B	1-Stage	60	10	0.25	0.67
2A	1-Stage	120	20	0.5	0.33
2B	1-Stage	120	10	0.25	0.33
3A	1-Stage	60	10	0.5	0.33
3B	1-Stage	60	20	0.5	0.67
4A	1-Stage	30	70	3.5	0.7
4B	1-Stage	15	35	3.5	0.7
5 A	1-Stage	30	70	3.5	0.7
5 B	1-Stage	30	40	2	0.7
6A	1-Stage	60	200	5	0.7
6B	1-Stage	40	200	5	1.0
7A	1-Stage	20	300	15	1.0
7 B	1-Stage	5	75	15	1.0
8A	1-Stage	20	430	21.5	1.0
8B	1-Stage	5	430	86	1.0
9A	1-Stage	20	200	10	1.0
9B	1-Stage	5	200	40	1.0
10A	1-Stage	20	200	10	1.0
10B	1-Stage	5	200	40	1.0
11A	1-Stage (lead)	5	200	40	1.0
11B	2-Stage (lag)	7.5	200	40	0.7
12A	1-Stage (lead)	7.5	200	40	0.67
12B	2-Stage (lag)	5	200	40	0.1
13A	2-Stage (lag)	5.4	200	40	0.93
13B	1-Stage (lead)	5	200	40	1

Horsham Surface Water Treatment

Dual Stage Treatment
All UCMR3 Compounds < 40 ng/L (combined)

Adsorption Capacity vs. GAC

AquaPR-206 sorbent material ~400 times more effective than GAC

^{*}Comparison based on 10% breakthrough as GAC was not able to achieve project effluent limits (40 ng/L UCMR3 or 70 ng/L combined PFOA, PFOS)

Cost Assessment – Horsham Example

100 gpm treating 6,000 ng/L PFOS & PFOA < 70 ng/L

		-	AquaPRS	GAC
Comital	Equipment	\$	800,000	\$ 50,000
Capital	Construction	\$	500,000	\$ 500,000
	Media Supply	\$	143,114	\$ 1,231,202
	Service	\$	2,400	\$ 2,400
	Power	\$	1,584	\$ 660
O&M	Chemicals	\$	-	\$ -
	Monitoring & Compliance	\$	75,000	\$ 75,000
	Replacement Parts	\$	-	\$ -
	Disposal	\$	7,775	\$ -
Lifecycle Cost ¹		\$	4,719,936	\$ 20,128,507

¹20-year Present Value based on 3% annual rate of return

~80% Cost Savings over 20-years

Cost Assessment – Horsham Example

100 gpm treating 6,000 ng/L PFOS & PFOA < 70 ng/L

Less than 8-month payback period compared to GAC

Notes: Horsham Air Guard Station (HAGS) water quality characteristics: 6,000 ng/L to <70 ng/L effluent PFOA + PFOS. GAC adsorption rates were applied higher than RSSCT demonstrated.

Willow Grove Naval Air Station

Performance Assessment – Ground Water

May – October 2021

Willow Grove Performance Assessment

Test Conditions

In Summary:

- 5 Tests
- 2 Conditions/Test
- 1 & 2 Stage
- Quantify Performance
- Sorbent Comparison

Table 16. Test Conditions Evaluated at the Willow Grove NAS Pilot Study.

Test Condition	Operating Mode	Hydraulic Detention Time (min)	Sorbent Mass (g)	Sorbent Density (g/L)	Flow Rate (L/min)
1A	1-Stage	20	200	10	1.0
1B	1-Stage	10	200	20	1.0
2A	1-Stage	8	200	25	1.0
2B	1-Stage	16	200	12.5	1.0
3A	2-Stage (lead)	10	100	10	1.0
3B	2-Stage (lag)	10	100	10	0.9
4A	2-Stage (lag)	10	100	10	0.9
4B	2-Stage (lead)	10	100	10	1.0
5 A	1-Stage	10	200	20	0.67
5 B	1-Stage	10	200	20	0.67

Willow Grove Ground Water Treatment

Dual Stage Treatment
All UCMR3 Compounds < 40 ng/L (combined)

Adsorption Capacity vs. Ion Exchange

AquaPR-206 sorbent material among highest adsorptive capacities of best performing IX Resins

Cost Assessment – Willow Grove Example

20 gpm treating 38,000 ng/L UCMR3 Compounds

		AquaPRS	IX (Single Use)
Comital	Equipment	\$ 275,000	\$ 250,000
Capital	Construction	\$ 100,000	\$ 100,000
	Media Supply	\$ 24,219	\$ 41,590
	Service	\$ 2,400	\$ 2,400
	Power	\$ 317	\$ 183
O&M	Chemicals	\$ -	\$ -
	Monitoring & Compliance	\$ 75,000	\$ 75,000
	Replacement Parts	\$ -	\$ -
	Disposal	\$ 1,316	\$ 837
Lifecycle Cost ¹		\$ 1,911,128	\$ 2,135,445

¹20-year Present Value based on 3% annual rate of return

~10% Cost Savings over 20-years against Best Performing IX Resin

Cost Assessment – Willow Grove Example

20 gpm treating 38,000 ng/L UCMR3 Compounds

2-year payback period compared to Single Use Resin

Notes:

- 1. Based on Test 3 data at Willow Grove for AquaPRS and compared with results from prior study (Ellis et. al 2022) using the best performing IX resin of five studied at Willow Grove
- 2. Effluent target based on Regional Screening Level (4 ng/L PFOS, 6 ng/L PFOA, PFNA and HFPO-DA, 39 ng/L PFHxS and 601 ng/L PFBS).

AquaPRSTM Technology Applications

Reverse Osmosis Concentrate – Municipal (Surface) Water

 $HI MCLG = [GenX_{water}/10 \text{ ng/L}] + [PFBS_{water}/2000 \text{ ng/l}] + [PFNA_{water}/10 \text{ ng/L}] + [PFHxS_{water}/9 \text{ ng/L}] = 1.0$

AquaPRS Implementation

Small-Scale Pilot Test Units

PFOS	PFOA

Willow Grove Test	Influent (ng/L)	Effluent (ng/L)	Adsorption (µg PFAS/g Sorbent)
Lab Pilot	33,000	< LOQ	1,146
Test 1A	24,333	38	1,636
Test 1B	24,333	59	1,648

		Adsorption
Influent	Effluent	(μg PFAS/g
(ng/L)	(ng/L)	Sorbent)
3,400	12	118
2,967	70	169
2,967	46	197

Factory Testing Matched Field Test Results

- Production Level Sorbent and Separator
- Automated
- Simulates one complete replacement Interval (< 2 weeks)
- On-site or Factory Testing

Pilot System (150 L/day)

PFAS Treatment Summary

• 400x more adsorbent than GAC

• Lifecycle Cost Advantage over GAC, RO and Ion Exchange

- Flexible Operations:
 - Adjustable sorbent levels
 - Automatic sorbent replacement (< 1 hour)</p>
 - > High quality (particulate free) effluent
 - Single or dual-stage capabilities

Acknowledgements

Thanks to the stakeholders for their support:

- Keith Freihofer US Air Force National Guard
- Lee Depersia US Air Force National Guard
- Jason Speicher NAVFAC Atlantic

Thank You!

Questions?

Terence Reid, P.E. - Aqua-Aerobic Systems, Inc. <u>treid@aqua-aerobic.com</u>

Joseph Quinnan, P.E. – Arcadis U.S. joseph.quinnan@arcadis.com

Vivek Pulikkal, PhD. – Arcadis U.S. <u>Vivek.Pulikkal@arcadis.com</u>

Christopher Bellona, PhD. – Colorado School of Mines chellona@mines.edu

