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› Since PFAS plumes are generally dilute (often a few ppb), remediation of 
PFAS-impacted water best lends itself to a treatment train approach with 
integrated PFAS concentration and destructive steps 

Technical Objectives
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› Demonstrate and validate a field-scale integrated treatment 
approach:

What’s Needed?

Our Objective

› Nanofiltration to concentrate PFAS and co-contaminants

› Electrical Discharge Plasma to treat concentrate

› “Apple to Apples” Bench-scale comparison of 
Electrochemical Oxidation and Plasma
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Technical Objectives
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● Nanofiltration can process a minimum of 
2,000 gpd of influent water (Feed)

● ~1,800 gpd will be a treated effluent stream 
(Filtrate, ~90% of Feed)

● ~200 gpd will be treated by plasma 
(Concentrate, ~10% of Feed)
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But wait 

there’s more!!



Today’s Presentation…
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› Overview: Nanofiltration and Enhanced Contact Plasma technologies

› Source water characterization

› Treatability testing results

› Next steps
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Coupling Concentration & Destruction
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Concentration Destruction

• Activated carbon

• Ion exchange resins

• Novel polymer 
adsorbents

• Silica coatings

• Zeolites

• Electrochemical 
Oxidation

• Enhanced Contact 
Plasma

• Hydrothermal Alkaline 
Treatment

• Photochemical Oxidation

• Foam Fractionation 

• Colloidal Gas 
Aphrons

• Nanofiltration

• Ultrafiltration

• Reverse Osmosis 

• Supercritical 
Water Oxidation 

• Sonolysis

• Thermal 
Oxidation

KEY 
POINT: 

There are numerous opportunities to combine concentration and destructive 
technologies for the treatment of PFAS-impacted waters



Nanofiltration: The Basics
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› High-pressure separation process where solutes are retained by 
membranes and concentrated into a smaller volume of water 
(retentate or concentrate)

› Majority of feed water exits system as treated permeate (or filtrate)

› % Recovery: proportion of feed water recovered as permeate

› % Rejection: proportion of solute (PFAS) retained by the membranes 



Closed-Circuit Desalination (CCD)
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› Newer membrane systems such as closed-circuit desalination (CCD) can achieve >20x concentration 
of PFAS-impacted waters

Semi-Batch Treatment Process

› During filtration, concentrate recirculated 
internally, concentrate valve closed

› Once a recovery (proportion of feed 
water recovered as permeate) setpoint is 
reached, concentrate valve opens

› With concentrate valve open, plug-flow 
flush displaces concentrate in system

› Concentrate valve closes, new cycle 
starts



Enhanced Contact Plasma: The Basics
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Plasma Formation: High voltage is applied between 
suspended electrodes (above the water surface) and 
submerged grounded electrodes

Plasma-based water treatment uses electricity to:
› convert water into a mixture of highly reactive species (i.e., plasma) 
› rapidly and non-selectively degrade recalcitrant organic contaminants

Plasma Reactor Components
› High voltage electrodes for generation of plasma
› Stainless steel strips as grounded electrodes
› Gas diffusers for bubble formation to drive PFAS 

to liquid surface
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Source Water Characterization
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Stormwater 
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Mad River

Proposed 
Field Demo 

Location

Monitoring 
Wells (3)

Ex
tra

ct
io

n 
W

el
ls

Monitoring 
Well (1)
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Wells (2)

› Samples collected from several extraction wells

› Most abundant PFAS: PFOS, 6:2 FTS, and PFHxS 

› Elevated alkalinity, calcium, and iron

Wright Patterson AFB: FTA 2



Bench-scale Treatability Testing
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60 gallons of PFAS-impacted 
groundwater collected from 

WPAFB and shipped to Mines 

1 gallon of concentrate shipped 
to Clarkson for analysis and 

DMAX for plasma testing

Permeate sample shipped 
to Clarkson for analysis

Treated water samples 
analyzed at Clarkson 



› Tested two membranes: NF-90 (tight NF) and CR-100

› System uses 0.14 m2 of flat-sheet membrane in two cells

› Each sequence produced ~3.6 L of permeate, ~0.4 L of 
concentrate

› SCADA logs flow rate, pressure, conductivity, temperature

› Performed approximately 30 sequences up to 90% recovery

› Collected permeate and concentrate samples

Nanofiltration: 
Membrane Concentration Tests
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Conceptual DiagramRaw Water 
Tote Pre-Filtration Hardness Removal 

(Cation Exchange)
Closed Circuit Desalination

90% Recovery Permeate

10% Concentrate
1-gallon shipped to 

DMAX Plasma 

Membrane System/Experiment Specifications:

Bench-scale CCD system



Nanofiltration: Operational Results
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Net Driving Pressure Temperature Corrected Specific Flux

NF-90 (tight NF) NF-90 (tight NF) CR-100 CR-100

KEY 
POINT: 

No decrease in permeability was observed for both membranes indicating that 
CCD treatment of pretreated groundwater did not result in membrane fouling. 



Nanofiltration: Performance Results
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CR100 Membrane 1
2

3



Nanofiltration: Performance Results
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› Concentrations of most PFAS in the 
CR100 permeate were below respective 
detection limits (Rejection ≈ 1)

› Two exceptions: PFPeA and PFBA 
(Rejection = 0.96 and 0.88, respectively) 

› Smaller solutes are harder to remove 
with membranes

› Bench-scale systems tend to 
underpredict rejection

CR100 Membrane



Enhanced Contact Plasma:
Retentate Treatment
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Batch bubble column reactor with liquid 
recirculation

› Treated liquid volume: 3.1 L

› Treatment time: 180 min

› Gas flowrate adjusted to maintain foam 
height 

› Proprietary surfactant addition every 15 min

› Solution recirculated through heat exchanger 
at 10oC



Enhanced Contact Plasma:
Performance Results
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› Concentrations of all identified precursors and long-chain PFAS were below respective detection 
limits (2-7 ng/L) within 20 minutes; many within 5 minutes of treatment

Precursors Long-Chain PFAS



Enhanced Contact Plasma:
Performance Results
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› Short-chain PFAS removal varied from 57% to 
>99% within 150 minutes of treatment

› Sulfonates readily degrade over course of 
treatment while carboxylates exhibit greater 
treatment times

› Production of PFBA and slow decline of PFPeA 
can be attributed to the degradation of long-
chain PFAS and unidentified precursors

› For the field demo, lower flowrates and/or 
multiple passes will be necessary to achieve 
short-chain PFAS removal

Short-Chain PFAS



Key Points
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› Nanofiltration achieved up to 10x concentration of source water 
and 88->99% PFAS separation using closed circuit desalination

› Both membranes (NF90 and CR100) operated well with little to 
no reductions in permeability 

› Plasma achieved complete removal of identified PFAS precursors 
and long-chain PFAS to below detection limits; longer treatment 
times required for short-chain PFAS

For the field demonstration…

› Pretreatment required to manage water chemistry at the site

› Lower flowrates and/or multiple passes will be necessary to 
achieve short-chain PFAS removal



Next Steps: Field Demonstration
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Experimental Plan Trailer Modifications
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Next Steps: 
Destructive Technology Comparison
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Direct comparison of two PFAS destructive technologies based on:

› PFAS removal efficiency

› Energy use & treatment cost ($/gal)

› Both technologies will use nanofiltration concentrate generated during the 
field demonstration.

› Technologies will be tested under similar controlled operating conditions.

› Key elements: i) assessing PFAS defluorination relative to the applied 
current density (mA/cm2) and ii) verifying the longevity of the technologies.

Objective

“Apples to Apples” Comparison



Enhanced Contact Plasma:
Performance Results
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› Concentrations of most PFAS in the 
CR100 permeate were below respective 
detection limits (Rejection = 1)

› Two exceptions: PFPeA and PFBA 
(Rejection = 0.96 and 0.88, respectively) 

Post-treatment:

ΣPFAS = 6.4 µg/L

TOPA = 6.3 µg/L

Pre-treatment:

ΣPFAS = 55.8 µg/L

TOPA = 24.2 µg/L


