

Are Regulatory PFAS Screening Levels Good Enough to Assess the Soil to Groundwater Pathway?

Prepared for:

International Symposium on Bioremediation and Sustainable Environmental Technologies - 2023

Prepared by:

Michael Hertz, PG Hannah Dennis Jonathan Reeve, PG

11 May 2023

Agenda

- Challenge and Introduction What's the big deal about soil to groundwater?
- Project Description and Results What did we do?
- Results Analyses What did we make of all this sampling?
- Comparisons How did our results compare to generic and site-specific screening criteria?
- Conclusions What does all this mean?

Challenge

What to do with soil?

- Current in practice treatment is landfilling (Subtitle C or similar)
- Stockpiles of soil are forming for those who know
- ◆ Current disposal pricing \$250 350 per ton
- Where are there PFAS impacted solids outside of known release areas?
 - Construction sites (commercial airports and MILCON)
 - Biosolids land application sites
 - CT recommends biosolid fertilizer <1.4 ug/kg (combined for 5 PFAS)
 - Biosolids generation facilities

Introduction

Remediation goal development for PFAS sites are underway

- Risk assessments for direct contact from soil impacts for human health and ecological receptors are more developed
- Soil to groundwater RGs need development/refinement as well
- Soil to Groundwater RG development has been performed for years
 - USEPA Soil Screening Level (SSL) Equation generic values
 - Site-specific SSL calculations
 - Site-specific modeling
 - Soil leachate analysis
- PFAS has unique properties that affect contaminant flux from soil to groundwater versus other organic compounds
- How do SSL calculations compare to soil leachate analyses?

Introduction - Typical PFAS Release Profile

Source (AFFF in soil, biosolid land applications, etc.)

- Complex chemistry
- Interaction with soil geochemistry and other contaminants
- Source strength function of soil type, infiltration, and PFAS concentration

Transitional (vadose zone)

- Sorption and retardation
- Precursor transformation
- Differential mobility

- Differential mobility more apparent
- Transformation of precursors can alter chemistry
- Stable terminal end products

- Advective transport
- Geochemistry

Introduction - Comparison of Soil Leaching Values

Why are there differences in criteria developed by Agencies?

- GW criteria utilized
- Partitioning coefficients
- Selection of target risk-based GW endpoint (HI of 1 or 0.1)
- Choice of uncertainty factors
- Selection of model or equations
- Choice of DAF
- Soil type
- Climate/hydrogeologic considerations

*EPA SSLs shown are based on HI of 0.1 and GW RSLs of 4 and 6 ng/L

Introduction – Soil Leaching Potential Methods

- Due to uncertainty associated with PFAS in modeling programs (K_{oc} and air-water partitioning), soil-to-groundwater equations and modeling may not be best for evaluating of site conditions.
- Currently, lysimeters and SPLP analysis are used to evaluated sitespecific PFAS leaching potential
 - SPLP is cost-effective (ex. NYSDEC requires SPLP for soil to groundwater assessment and can be reasonable worst case)
 - Lysimeters likely to provide better site-specific leachate concentrations but can be problematic in arid environments
- USEPA's Leaching Environmental Assessment Framework (LEAF) is under evaluation as another alternative
 - Widely used for inorganics
 - Two concurrent studies including Dr. Guelfo (Texas Tech University) under SERDP and Dr. Townsend (University of Florida) under Hinkley Center are evaluating LEAF for PFAS

Project/Site Description

- Project consists of a DoD facility with documented AFFF releases to the environment
- Semi-arid environment (rainfall of 16 in./year)
- Five release areas identified for SPLP sampling
 - Previous soil sampling for PFAS confirmed releases
 - 33 SPLP samples (3 dups) collected across release areas
- Concurrent groundwater sampling determined there are likely other release points
 - Groundwater beneath some release sites is affected by known release sites and by unknown source areas

Project/Site Description

- Goal to correlate leachate concentrations from SPLP analysis to soil concentrations that would impact groundwater above 40 ug/L
 - Updated our analyses considering Draft MCLs (4 ppt)
- Soil and groundwater data collected contemporaneously with the SPLP samples

Project/Site Description

- Previous soil sampling identified 0 1 ft bgs as the most impacted at the release areas
 - ◆ SPLP sampling from 0 1 ft bgs
 - Co-located soil samples for PFAS collected
 - Co-located groundwater grab water table sample for PFAS (21 of 30 locations)
 - One SPLP boring performed from surface to water table
 - 0-1, 2-3, 4-5, 9-10, and 14-15 ft bgs
- Samples analyzed via Modified 537
 - Analyses focuses PFOA, PFOS, PFBS, PFHxS, and PFNA (no Gen-X)
 - Focused on PFAS with screening criteria

Sampling Results

Sampling focused on source areas soils and groundwater

- Concentrations in the ppb level not ppt levels!
- Limited data variability

	PFOS			PFOA			
	GW (µg/L)	Soil (µg/kg)	SPLP (µg/L)	GW (µg/L)	Soil (µg/kg)	SPLP (µg/L)	
Average	27.2	3,837	74.5	4.02	239.6	6.08	
Median	13.0	580	14.6	0.96	2.1	0.080	
Maximum	73	28,000	350	23	3,400	83	

Analyses – SPLP vs Soil

- Surprisingly linear relationship for all 5 PFAS evaluated
 - ◆ R² range: 0.87 (PFOS) to 0.99 (PFHxS)
- Slope of regression used as indicator of relative leachability rates
- Comparison of leachability to log K_{oc}¹
 - PFOA relatively leaches the fastest of the five PFAS evaluated
 - Generally correlated (higher log_{Koc} = less leaching), with the exception of PFBS

1 – Log K_{oc} values from ITRC Physical and Chemical Properties Table 4-1 for select PFAS Excel file (updated October 2021)

	Slope	log _{koo}	conversion factor (soil concentration/SPLP)
PFOA	2.46E-02	2.92	40.65
PFHxS	2.24E-02	2.66	44.64
PFNA	1.89E-02	3.6	52.91
PFOS	1.54E-02	3.58	64.94
PFBS	9.70E-03	2.55	103.09

Sorted by slope (greatest to smallest) Greater slope = more leaching Lesser slope = less leaching

Analyses – Groundwater versus Soil

- Correlation for all 5 PFAS evaluated was moderate
 - ◆ R² range: 0.41 (PFOS) to 0.60 (PFOA)
- Likely groundwater impacts from upgradient sources affect groundwater results for source area assessed
 - Attempted to tease out PFAS groundwater flux did not improve correlation
- Relative leachability correlates well to the log_{Koc}
- Calculated conversion factor could be used to estimate soil concentrations that yield groundwater regulatory exceedance

	Slope	log _{koc}	Conversion factor (soil concentration/GW) (L/kg))
PFOA	6.90E-03	2.92	144.93
PFBS	6.20E-03	2.55	161.29
PFHxS	4.30E-03	2.66	232.56
PFNA	3.50E-03	3.6	285.71
PFOS	2.10E-03	3.58	476.19

Sorted by slope (greatest to smallest) Greater slope = more leaching Lesser slope = less leaching

Analyses – Groundwater versus Soil

- Limiting regression to PFCAs improves correlation (r² = 0.67)
- Weaker correlation in regression of individual analytes (r² = 0.41 to 0.60) may be partially attributed to biotransformation
 - Available data does not include precursors or intermediates
 - Limiting to PFCAs reduces influence of biotransformation

Analyses – SPLP versus Groundwater

- Correlation for all 5 PFAS evaluated was moderate
 - ◆ R² range: 0.47 (PFOS) to 0.66 (PFBS)
- Likely groundwater impacts from upgradient sources affect groundwater results for source area assessed
 - Attempted to tease out PFAS groundwater flux, did not improve correlation
- Average Dilution Attenuation Factor (SPLP/GW concentration) = 0.8 to 2.6 (PFOA/PFOS) indicating little dilution of SPLP leachate to groundwater

Analysis – Assessment of Soil Variables on Leachability

- Leachability compared to TOC, moisture content, pH, and clay content (% fines) using residuals from GW vs. Soil regression
 - Strongest correlation associated %fines
 - Higher clay content associated with lower leaching potential (negative residual)
 - Limited variation for pH no trend assessment viable

15

Analysis – Assessment of Soil Variables on Leachability

- Weak correlation associated with TOC and moisture content
- Clay content, pH, TOC, and moisture likely impact leachability; however, data limitations include:
 - Only one historical measurement of TOC, pH, and clay content available per source area
 - Impact of upgradient sources on GW concentrations is not clear
- Higher variance associated with Release Area 1 appears to bias regressions
 - Standardized residuals did not improve regressions

Principle Component Analysis: Physical Parameters

- Principle Component Analysis (PCA) performed on physical parameters and PFOS
 - TOC, moisture content, pH, and clay content (% fines)
 - PFOS analyzed as ratio of soil to water concentration
- PCA indicates three groupings, two of which are distinct release areas
 - PC2 driven primarily by %fines
 - Suggests variations in physical properties may contribute to variations in leachability between source areas

 $(0.0112L^2)^{5} + d_{a} \{-\exp[(-LI)/(Kid_{a})]\}$

Analyses – EPA SSL Calculations

- EPA SSL model used to develop risk-based, source-area-specific SSL
- Calculated mixing zone depth and dilution factor for each source area using:
 - Source length (L)- based on exceedances of HHRA SL for PFOS
 - Infiltration rate (I) literature value
 - Aquifer hydraulic conductivity (K) interpreted from slug tests
 - Hydraulic gradient (i) calculated using static water levels
 - Aquifer Thickness (d_a) from CSM based on historical well logs

Source-area-specific SSLs developed using mixing zone depth as well as:

- Target leachate concentration (remediation goal * calculated dilution factor)
- Depth of source (d_s) based on exceedances of HHRA SL for PFOS
- + Infiltration rate (I) and soil bulk density (ρ_b) literature values
- Exposure duration (ED) assumed 70 years based on EPA guidance

Analyses – EPA SSL Calculations

- Calculated dilution attenuation factors for five source areas range from 1.2 to 3.2
- SSL for PFOS/PFOA first calculated using target leachate concentration of Draft MCL x Dilution Factor
 - SSLs range from 0.07 to 0.1 ug/kg
- SSL model used to back calculate soil concentration associated with SPLP concentration
 - SPLP concentration input as target leachate value
 - Predicted soil concentrations of PFOS ranged from 10-28% of measured soil concentrations

	Area 1	Area 2	Area 3	Area 4	Area 5
Mixing Zone Depth (m)	9.60	13.26	24.47	5.50	13.25
Dilution Factor (unitless)	1.12	1.58	1.38	3.15	1.08
SSL (PFOS/PFOA for Draft MCL) (ug/kg)	0.02	0.02	0.07	0.1	0.01
Calculated/Measured Soil Conc PFOA	10.42%	14.45%	47.42%	27.20%	12.31%
Calculated/Measured Soil Conc PFOS	10.61%	10.40%	28.17%	21.97%	10.32%

Conclusions – SPLP and SSL Comparisons

SPLP data reasonable assessment of PFAS leachate to groundwater

- Limited correlation of soil to groundwater and SPLP to groundwater suggests other PFAS-soil interactions are not well accounted and reduce leaching to groundwater.
- SPLP results are likely biased high versus actual leaching dilution attenuation factor results comparisons support (20 – 30%?)
- Site-specific use of the EPA SSL equation consistently overestimates PFAS leaching from soil concentrations by 3.5-10x
- Extrapolation of soil/groundwater ratios from site-specific
 - PFOS SSL = 18.5 ug/kg (EPA Look-up Value = 0.004 ug/kg)
 - PFOA SSL = 3.2 ug/kg (EPA Look-up Value = 0.092 ug/kg)

Conclusions – SPLP and SSL Comparison

- State generic soil leaching criteria closer to sitespecific estimated results; however; state criteria generally based on higher groundwater standards
- Comparison of West Coast versus East Coast sites
 - West coast (arid and fine-grained materials) 3 to 18.5 ug/kg
 - East coast (temperate climate with coarse grained sands) - 1 – 10 ug/kg
- Nice to Have!
 - Find upgradient soil for SPLP sampling to confirm estimated SSLs (i.e., less than 100 ug/kg PFOA/PFOS)
 - Collect lysimeter samples for comparison quantify degree of bias

Thank You!

Michael Hertz, PG National Service Line Program Manager – Site Characterization and Remediation mhertz@eaest.com

