Implications of 1,4-Dioxane Source Attenuation and Plume Biodegradation on Its Behavior at Groundwater Sites

Battelle Bioremediation Symposium 2023

11 May 2023

David T. Adamson, P.E., PhD

ENVIRONMEN

AGENDA / ACKNOWLEDGEMENTS

- Problem Statement
- Relevant Attenuation Processes
- Summary of Empirical Rate Data for 1,4-Dioxane
- Scenario Modeling
- When is a 1,4-Dioxane Source "Persistent"?

Maile Smith GSI Environmental

Phil de Blanc GSI Environmental

Tony Danko *NAVFAC EXWC*

David Freedman and Angel Ramos García *Clemson University*

John Wilson and Barbara Wilson Scissortail

> ESTCP ER-201730 Project Completed in 2022

Remediation

1,4-D plumes are generally dilute

- Key concern at DoD sites
- Recent survey of 400 primarily commercial/industrial sites: median site had historical max. concentration of **110 μg/L**
- 1,4-D plumes are often diffuse with poorly defined "source areas"
 - Similar concentrations throughout much of plume

GSI

ENVIRONMENTAL

Remediation

Long-term management using Monitored Natural Attenuation (MNA) may be an option

GSI

ENVIRONMENTAL

- Requires understanding of relevant attenuation processes and associated rates
- Median of the most recent max. detections at these same sites is 17 μg/L (decreased from 110 μg/L historical max.)
- "Attenuation" is likely occurring, but what type?

What Processes Can Contribute to Dilute/Diffuse 1,4-Dioxane Plumes?

- Other considerations
 - Low source strength?
 - Multiple and/or on-going sources?
- Matrix diffusion?

Summary of Empirical Rate Data for 1,4-Dioxane

KEY POINTS:

- 1,4-D source decay can be rapid
- 1,4-D is biodegradable, but rates can be slow and activity is locationspecific

Using Rates to Model Natural Attenuation Scenarios

Development of a Quantitative Framework for Evaluating Natural Attenuation of 1,1,1-TCA, 1,1-DCA, 1,1-DCE, and 1,4-Dioxane in Groundwater

ER-201730

Free Excel-based modeling tool: "MNA Rate Constant Estimator" -

POINT OF CONTACT

Principal Investigator

NAVFAC EXWC Phone: (805) 982-4805

Anthony Danko, Ph.D.

anthony.s.danko.civ@us.navy.mil

Final Report
ER-201730 Final Report.pdf
12/8/2022

Executive Summary

ER-201730 Executive Summary.pdf

5/4/2022

PRODUCTS

User's Guide

BioPIC User's Guide and Tool

ER-201730 BioPIC User's Guide and Tool.zip

1/16/2023

User's Guide

MNA Rate Constant Estimator User's Guide and Tool

ER-201730 MNA Rate Constant Estimator User's Guide and Tool.zip

1/16/2023

https://www.serdp-estcp.org/projects/details/bd9c56ae-002e-40fc-88cf-4a9c8566de93/er-201730-project-overview

Using Rates to Model Natural Attenuation Scenarios

MNA Rate Constant Estimator

Intended Use #1:

Determine appropriate rate constants for relevant natural degradation processes (by calibrating model with C vs d data)

Using Rates to Model Natural Attenuation Scenarios

Plume Biodegradation Rate

11

2003

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.1 \ yr^{-1}$

1,4-D plume rate = 0.01 yr⁻¹

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.1 \ yr^{-1}$

1,4-D plume rate = 0.01 yr⁻¹

13

2043

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \,\mu g/L$

1,4-D source rate = 0.1 yr^{-1}

1,4-D plume rate = 0.01 yr^{-1}

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \,\mu g/L$ 1,4-D source rate = 0.1 yr^{-1}

1,4-D plume rate = 0.01 yr^{-1}

Dilute 🗸 Max concentration < 10 µg/L Diffuse 🗸

- Plume does not stabilize
- Semi-detached

2003

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.1 \ yr^{-1}$

1,4-D plume rate = 0.1 yr^{-1}

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 $\mu g/L$

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.1 \ yr^{-1}$

1,4-D plume rate = 0.1 yr^{-1}

- Dilute 📀
 - Max concentration
 < 10 μg/L
- Diffuse?
 - Concentrations vary by ~ 2 orders of magnitude within plume (0.1 – 10 μg/L)

2043

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \mu g/L$ 1,4-D source rate = 0.1 yr^{-1}

1,4-D plume rate = 0.1 yr^{-1}

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.1 \ yr^{-1}$

1,4-D plume rate = 0.1 yr^{-1}

Scenario #3: *Persistent 1,4-Dioxane Source*

Scenario #3: *Persistent 1,4-Dioxane Source*

INPUT VALUES:

- 1,4-D release date = 1970
- 1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.01 \ yr^{-1}$

1,4-D plume rate = 0.01 yr⁻¹

- Not Dilute
 - Max concentration ~ 600 μg/L
- Not Diffuse
 - Concentrations vary by ~ 3 orders of magnitude within most of plume

Scenario #3: *Persistent 1,4-Dioxane Source*

INPUT VALUES:

1,4-D release date = 1970

1,4-D initial concentration = 1000 μ g/L

Seepage velocity = 50 ft/yr

Regulatory criterion = $1.0 \ \mu g/L$ 1,4-D source rate = $0.01 \ yr^{-1}$

1,4-D plume rate = 0.01 yr⁻¹

- Not Dilute
 - Max concentration ~ 400 μg/L
- Diffuse?
 - Concentrations vary by ~ 2 orders of magnitude within most of plume

When is a 1,4-Dioxane Source "Persistent"?

- Source is in vadose zone with limited recharge С Source is in saturated zone with poor flushing and/or slow dissolution
 - Source is in low-permeability zone (matrix diffusion)
 - Source is continuing to be released to -----the subsurface
 - Points of compliance (or other monitoring locations) are distant from source

С

С

Concentrations will still decrease (slowly) at most/all locations over time

Concentrations may plateau

Concentrations could still increase over time

When is a 1,4-Dioxane Source "Persistent"?

--→ KEY POINT: Each of these cases could also result in dilute, diffuse plumes.

SUMMARY AND IMPLICATIONS

- Dilute and diffuse plumes of 1,4-D can originate from common fate and transport processes
 - High source decay rates + low plume biodegradation rates
 - Location of max. concentration may shift over time
 - Multiple sources may be present
- Prevalence of dilute and diffuse 1,4-D plumes suggests that empirically derived rates are reasonable
 - Attenuation is likely occurring driven by source decay
- Persistent 1,4-D sources are still possible in some cases

Distribution of Historical Maximum 1,4-D Concentrations

- Typical in situ treatment strategies may be ineffective and/or costly
- Long-term management using Monitored Natural Attenuation (MNA) may be an option
 - Requires understanding of relevant attenuation processes and associated rates
 - "Attenuation" is likely occurring, but what type?

Distribution of Historical Maximum 1,4-D Concentrations

• 1,4-D plumes are generally dilute

- Key concern at DoD sites (see chart)
- Recent survey of 400 primarily commercial/industrial sites shows that median site had historical maximum concentration of 110 μg/L

• 1,4-D plumes are often diffuse with poorly defined "source areas"

• Similar concentrations throughout much of plume

- Typical in situ treatment strategies may be ineffective and/or costly
- Long-term management using Monitored
 Natural Attenuation (MNA) may be an option
 - Requires understanding of relevant attenuation processes and associated rates
 - Median of the most recent maximum detections at these same sites is 17 ug/L (decreased from 110 ug/L historical maximum)
 - "Attenuation" is likely occurring, but what type?