TRANSFER AND HEAT
GENERATION: LESSONS FOR
MEASURING NSZD RATES
USING THERMAL GRADIENT
METHODS

Easy set-up. Expert results.



NSZD Intro
Methods
The Model: Assembling a (simplified) VCS (Virtual Contaminated Site)
Kinetics

Mass Balances
Heat Balances

The Thermal Gradient Method
Modeling Coupled Heat Transfer and Generation

Another model:
“The Single Stick” Method

Results

Conclusions
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* Need to reconcile lab and field data
- Petroleum biodegradability
- Biodegradation temperature dependence
* A decision-support tool for contaminated sites
* Specifically: validation of thermal gradient method

http://avecom.be/product/microcosm-tests

research
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http://avecom.be/product/microcosm-tests
http://avecom.be/product/microcosm-tests
http://avecom.be/product/microcosm-tests
http://www.mprnews.org/story/2014/06/03/bemidji-oil-spill-site-research
http://www.mprnews.org/story/2014/06/03/bemidji-oil-spill-site-research
http://www.mprnews.org/story/2014/06/03/bemidji-oil-spill-site-research
http://www.mprnews.org/story/2014/06/03/bemidji-oil-spill-site-research

NSZD Conceptual Model

A — . .
| Microbial processes produce
co, stoichiometric amounts of energy
{Background) LNAPL o o
€O;  (Residua) (CH, Oxidation)
v \ /

Water Table

Groundwater Flow
Saturated Zone

after Sihota et al., 2011

(@) CgHig+3.502—6.25CH4 + 18860 = 24 keal /gHC
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NSZD Conceptual Model

co, stoichiometric amounts of energy

(Background)

‘ ’Cé i ~ 1  Microbial processes produce

LNAPL
CO, (Residual)

€O, 0,
(CH, Oxidation)

Water Table

Groundwater Flow
Saturated Zone

after Sihota et al., 2011

@ CgHig+3.502—6.25CH4 + 1.EAEN2= 24 keal /gHC
(2) 6.25CH, +12.50, - 6.25C0, + 12.5H,0 AHmox = 1,200 keal /gH




NSZD Conceptual Model

o ’Cé i ~ 1  Microbial processes produce

co, stoichiometric amounts of energy

(Background)

Groundwater Flow

after Sihota et al., 2011

@ CsHig+3.502-6.25CH4 + 1.8B6Q= 24 keal /gHC
(2) 6.25CH, +12.50, - 6.25C0, + 12.5H,0 AHmox = 1,200 keal /gH

(3 CgHig+ 12.502—8C02 + 9HABaerobic = 1.224 kcal /g




NSZD methods

02
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co,

(Background) Y 9

Co, (Residual)

co, 0,
(CH, Oxidation) +

Dissolved Hydrocarbon Plume

—

Groundwater Flow
Saturated Zone

after Sihota et al., 2011




NSZD methods

02
4 | —
Gﬂz ,‘» \
(Background)
co. {R:::;:u €0, 0;
- (CH, Oxidation) +

Water Table

Dissolved Hydrocarbon Plume

—

Groundwater Flow
Saturated Zone

after Sihota et al., 2011

Reaction By-Product _ Implementation

Chemical products Mass balance CO, flux
measurements
Heat Heat balance Heat flux

measurements



Modeling Biodegradation Kinetics

J. Monod
1910-1976

Image from Wikipedia



Reaction Rates (Lab)

Monod Kinetics: Reaction rates depend on Contaminant Concentration

dC kmﬂxc @
— — s CgH18—CH4
dt — C+ Cn . Siddique et al. (2008)

o k., = 1.54kgm3yrl

u‘% o C,=0.47 kg m3
FBH *MaxrateatC”lkgm'3T @ CH4—~CO>
- 77
W o Fast reaction (Davis, 2009)
m—d
S
o ® CgH18—CO>
i o Aerobic rates higher
a iy than anaerobic

( o (Molins et al., 2010)
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* Compare 1 kg/m3=1g/Lto
Sr =0.1 (smallest value from Mercer and Cohen, 1990)

->~40 g/L so most sites with NAPL likely operate at Max rate (0 order)




Modeling (Temperature-Dependent) Biodegradation Kinetics

¢ S.A. Arrhenius
1859-1927

-

'IF;,
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Image from Wikipedia



Reaction Rates (Lab)

Reaction rates depend on Temperature (Arrhenius equation)

—EA
lr — Ao RT

12 Concentration Loss Rate vs Temperature

® @ measured

T — spline interpolation
an 10}

T'}']

C
"

d
A

0.8

0.6

T'1 [

0.4+

Concentration Loss Rate [1/ygar]

0.2+

T'1 n

00 - . I 1 1 L
(_r. 0 5 10 15 20 25 30 35 40 45
Temperature [deg Celsius]

Rxn Rate =

Data from
Zeman, N. et al, 2014



Reaction Rates (Lab)

Reaction rates depend on Temperature (Arrhenius equation)

—EA
lr — Ao RT

12 Concentration Loss Rate vs Temperature

® @ measured

T — spline interpolation
an 10}

T'}']
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Inputs

Model Approach

Approach

At each elevation account for

a) Local LNAPL concentration

b) Correct for local temperature

c) Estimate “local biodegradation rate”

d) Cumulative biodegradation rate
results in a bulk methane oxidation rate
at A/A interface

Proprietary
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Last Piece: Modeling Heat Transfer in Soils

~ J. Fou
168-18




Heat Equation with Heat Generation

To solve, need

* Soil properties (density, heat capacity
and heat transmissivity)

 Boundary conditions (i.e., ambient
and groundwater temperature)

Heat equation

. 1
+ gl XQCH

+ heat generation



Heat Equation with Heat Generation

To solve, need
Soil properties (density, heat capacity

Heat equation

and heat transmissivity)

Boundary conditions (i.e., ambient
and groundwater temperature)

. 1
+ gl XQCH

+ heat generation

q; : heat
generation rate

@® CgH1s—CH4
® CH4—-CO2
® CgH18—CO2

Heat generation rate
stoichiometric to the
reaction rate



Modeling Heat Transfer in Soils

B
Arrhenius
1859-1927

-

A simple, yet
realistic geometry

J

Model
(Heat Equation)

|

Outputs: \
T,(t, z)
C,(t,z)
AC
NSZD rate = AL
z _J

Formerly available at:

www.BiogenicHeat.com



Web Based Model, Open to Anyone

Login

halbrecht@soilgasflux.com

Get Started With E-flux Biotherm

To log in, input the info printed at the top of the page

Loging In:
www.soilgasflux.com
www.BiogenicHeat.com



http://www.soilgasflux.com/

Model Approach

Inputs Approach Outputs

00

5 b3 At each elevation account for

05

a) Local LNAPL concentration

10 150 =

b) Correct for local temperature

Depth [m]
(=]
A

c) Estimate “local biodegradation rate”

B
=
Concentration [kg

d) Cumulative biodegradation rate 20
results in a bulk methane oxidation rate 25
at A/A interface R R

Time [menths]

LNAPL Concentration [kgfm"3]

Solve

0.0 gy

(1]

coupled

1.0

Local temperatures determined by

Depth [m]

a)  Boundary conditions

Temperature [deg Celsius]

2.0

2| 1 Heat produced by reactions

o  Soil heat transfer 258

15 20 25 30 35
Time [manthz]



Estimating LNAPL Loss from Heat Balance

Using thermal gradients

Ambient
temperature

G = Gy + G
iy L 2L :
T
: % B
el e o <
i ey §
Ruszp = 75zl i
AH nszn Gl g
' % B
e cha Nl Tl e L
I--I (% . J'E 1 it
ﬁé S Groundwater temperature

temperature



Model Motivation

* How NSZD rates vary seasonally?

* How much supplementary heat need to increase
NSZD rates (thermally enhanced NSZD)

e Can NSZD rates from the mass balance (i.e., Monod)
with those from thermal gradients be reconciled?
* Background correction
* Temporal effects (noise)



Two Methods for Estimating LNAPL Loss

Using Mass Balance

% ITYVTYE
Model | AR LY i
Inputs . (Heat T, (¢, z)
C,(t,
[equatlon) 1( Z) ﬁc
NSZDMnnod = ﬂt_t

\ = )




Two Methods for Estimating LNAPL Loss

Using Mass Balance

Inputs
By

Model
(Heat
equation)

)

B

NSZDpmonoa =

\

T, (¢, z)
Cy1(t, z)
AC

At

=

Using Thermal Gradients

ANMUNYS

|t



Two Methods for Estimating LNAPL Loss

1. Using Mass Balance 2. Using Thermal Gradients
% =~ auaul;
Inputs . I\(/IHoedail T: (¢, z) ( LR ( —— ~N
(Loc. 1) equation) Ca(t2) AC Ther'mal ) Gradient-based
NSZDpmonoa = At > Gradients . NSZD rate
\_ dz Y, CTGJOC = At

z




Two Methods for Estimating LNAPL Loss

1. Using Mass Balance

% -y

Model T
EE
(Loc. 1) equation)

[ Inputs )
[&oc. 2)

NSZDpmonoa =

AC
At

- =

r T/Io?el_.] -B-l;;)—uts:
|®| (Heat |E
— \e_qua_tIOl)) T?,(tJZ) J

YV

|

\_

Thermal
Gradients

dT
dz

\

V.

2. Using Thermal Gradients

( Thermal

NSZD rate

RTG,IOC =

Z

Gradient-based

At

\

AC

_J




Case 1: Bemid;i

T LNAPL ion (kg m=
«  Crude oil spill site concentration (kg =)

N B o o] S E
C)O ? o o o o 10
* Depth to Groundwater: 7 m K
®
. o
 Average Groundwater Temperature: 9 °C " w3
S 0
309, o £
A | .- Observation wel and identifier A 55
: ! T o
N_
] l — Sampled interval =
o
432 — o
= | E ———————————————— i | —
s | E E
B | o8 <
g ) &
g
@ g "
i
E
8 474 - . il §
E |_—)HET=-_-;
<
[ Flow —= ol
420 S E— I S — | - S I} il
0 10 20 30 40 50) 60 70 80
Horizontal distance (meters)

(Dillard et al., 1997) ¥



Concentration Loss Rate [1/year]

Depth [m]
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Input:

Concentration Loss Rate vs Temperature
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Case Study: Bemidji

Also looking at each set of results in different time scales (short term, monthly, and annual
averages) and comparing to the mass-balance NSZD rate (R, 10q)

Output: Microbial Kinetics-based NSZD Rates

2.0 -

1.8 - RMonod .

LNAPL Loss Rate [kg/(m~2 yr)]
o o = - = =
o o o N = o

o
IS

¢

0.6 0.8 1.0
Time [year]

o
ol
o
oL
¥
D_
=~



Reconciling MB with HB, V.0?

1. Using the mass balance/ 2. Using thermal gradients
Monod rates

\V/s.




(1] No Background Correction

Ogite = 3:58 X 10 -7 m?/s

Model Output Short term Average Thermal

Gradient NSZD rates

Output: NSZD Rates with Extra Zones

Output: Microbial Kinetics-based NSZD Rates T
' - - o

0 Output: Soil Temperatures 2.0
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1. Thermal gradient location Error Rate
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Model Runs

® © ®

Parameters: Bemidiji

) Parameters: Bemidji Parameters: Bemidji
Background location: Background location: Background location:
None Identical, except no Identical, except
contaminant different /thermal
diffusivity (2x)
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Case Study: Bemidji

Also looking at each set of results in different time scales (short term, monthly, and annual
averages) and comparing to the mass-balance NSZD rate (R, 10q)

2.0

1.8

o = = = =
@ o N IS o
T
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Experimental Design

®

No
Background
Correction

©

Ideal
Background
Correction

Short-term
Thermal i,;IjtZeDs
Gradients
Monthly
Average N NSZD
Thermal Rates
Gradients
Yearly
Average N NSZD
Thermal Rates
Gradients

3 pairs of planes for heat balance
- Aerobic zone (Rrg a¢)

- Entire vadose zone (Rqg v;,)
- Methane oxidation zone (Ryg wox)

®

Short-term Short-term
Thermal ¥ gjtzeg Thermal [ gjii
Gradients Gradients
Monthly Monthly
Average NSZD Non-ldeal Average NSZD
Background B
Thermal Rates Correction Thermal Rates
Gradients Gradients
Yearly Yearly
Average N NSZD Average N NSZD
Thermal Rates Thermal Rates
Gradients Gradients
27 thermal Compare to
gradient mass-balance
estimates NSZD rates

(Monod)



No Background Correction
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No Background Correction
= 3.58 x 10 " m?/s
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No Background Correction
= 3.58 x 10 " m?/s
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(1] No Background Correction

Ogite = 3:58 X 10 -7 m?/s
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Ideal Background Correction

Osite = o background = 3'58 X 10 07 mzls
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Ideal Background Correction

Osite = o background = 3'58 X 10 07 mzls
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© !deal Background Correction
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® Non-ideal Background Correction

Ogite = 3:58 X 10 97 M2/S , Gyackground =2 O
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® Non-ideal Background Correction
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Non-ideal Background Correction
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Average Annual Thermal Gradients

Absolute Perfect Imperfect
temperatures Background Background
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Further Reading on Long-Term Thermal

Thermal gradient method very sensitive to background location selection
(Rayner et al, 2020)

Single Stick Method (Askarami and Sale, 2020) no background location if
heat balances is cumulative (integrated through time)
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Water Research 169 (2020) 115245

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Thermal estimation of natural source zone depletion rates without R
background correction e

Kayvan Karimi Askarani, Thomas Clay Sale’

Civil and Environmental Engineering Department, Colorado State University, 1320 Campus Delivery, BOI, Fort Collins, CO. 80523-1320, USA

ARTICLE INFO ABSTRACT

Article history: Real-time monitoring of subsurface temperature profiles is a promising approach to resolving natural
Received 24 June 2019 source zone depletion (NSZD) rates for shallow petroleum liquids. Herein, a new “single stick” compu-
Received in 'e”:scd form tational method for transforming temperature data into NSZD rates is advanced. The method is predi-
.lgc(g;t;l;c;;glciahcr 2019 ca(ed_ on sulrlsurface temperatures being a function of surl’age heating and cooling, ar_ld the heat
Available online 31 October 2019 assocm[gd with NSZD. Given subsurface temperature at two points, a system of two-equation two-un-
known is used to resolve NSZD rates. Mathematical formulations and computational algorithms are
validated through computational tests showing near perfect agreement between prescribed and pre-

WKawnararde-

Askarami and Sale, 2020, Single Stick Method: Analytical Solution to the Heat
Equation solved at each time step (i.e., daily), then numerically integrated
through time.
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background correction et

Kayvan Karimi Askarani, Thomas Clay Sale’

Civil and Environmental Engineering Department, Colorado State University, 1320 Campus Delivery, BO1, Fort Collins, CO. 80523-1320, USA

ARTICLE INFO ABSTRACT
Article history: Real-time monitoring of subsurface temperature profiles is a promising approach to resolving natural
Received 24 June 2019 source zone depletion (NSZD) rates for shallow petroleum liquids. Herein, a new “single stick” compu-

':g(gi“"; 1“2'8‘;‘;5“‘1 form tational method for transforming temperature data into NSZD rates is advanced. The method is predi-
ctober

Accepted 26 October 2019 cated on subsurface temperatures being a function of surface heating and cooling, and the heat
Available online 31 October 2019 associated with NSZD. Given subsurface [emperantlre at two po‘m(s‘ a system of rv{u-equanurv) two-un-

known is used to resolve NSZD rates. Mathematical formulations and computational algorithms are
P validated through computational tests showing near perfect agreement between prescribed and pre-

Thermal gradient method very sensitive to background location selection (Rayner et al, 2020)
Both long term approaches reduce to similar practice: long term heat balances reduces error




Conclusions

* Simple model improves understanding of LNAPL NSZD CSM

 Simulated temperature measurement errors do not seem large
with respect to error due to short term ambient temperature
fluctuations

* Ideal background location reduces error rates (short term and
monthly averages)

* Departures from ideal background correction introduce
significant errors

* Noise due to short-term fluctuations in ambient temperatures
cancels out over an annual (seasonal cycle) period

* Annual averaging improves thermal gradient-based LNAPL loss
rate estimates within 1% or less target, as long as locations
chosen are outside reactive zone: (US Pat. 62/151.564)



(George E. P. Box, 1987)
“Essentially, all models are wrong, but some are useful”
“...the practical question is how wrong do they have to be to not be
useful”
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Thermal Gradient Effects of T
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Thermal Gradient Effects of T

i) Sensor location .

Measurement Error
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Thermal Gradient Effects of T
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Thermal Gradient Effects of T
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Thermal Gradient Effects of T
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Thermal Gradient Effects of T

Measurement Error

Ideal soil Simulated measured
temperatures soil temperatures

Output: Soil Temperatures

0
|
24 0 QOutput: Soil Temperatures (background location)
1k 24
18
— 18
2F 12 9
& —
3 12 §
E3f ° g g
£ - ° ¥
a o £ =
= @
[spv RN © 0 E]
6 E‘ g
ay ,6 E.
i g
-12
6+
’ . . . . ' o
0 10 20 -24

50 60

| | | I I i Time months

Dutput: NSZ0 Aates with Sparse Zones

Time [months] i

Outpul- NSZD Rates with Cxtra Jones

— Watonn Zasa, Spare

TS |
. | |

- Loje* /‘,fm'w,\ 1 Hllee —— *
= 1 “I'l. 1 — | I
! 15
iu Fi - _;H'h—.-\\ ! 3 I uql’mf |HIHI|| |
E ] * "Ilr 4 // \s\ E 1 |I | Il 1 T It wij
ks / 9 |
4 ] =

Proprietary, © 2018 All Rights Reserved T .'-'\n-el'rnrl.



Thermal Gradient Effects of T

Measurement Error

Ideal soil Simulated measured
temperatures soil temperatures
0 Output: Soil Temperatures
| 24 0 Output: Soil Temperatures (baskgrognd location)
1f . 24
5 b g 18
3 2 3
gaf 6 § 6 ﬁ
o a4l = 0 S
-6 g . i
——— ! 1
]
D) ) ) )L ) L
0 10 20 30 40 ' 24

Time [months]

Simulated noisy soil temperatures add

considerable error to short term thermal-
J-==  gradient NSZD estimates, but error gets | -
reduced over long term measurement (monthly |l
and annual averages)

Eln
N | Bl Gk
c-'.‘ 0B 18 |
[¥] [ 06

Proprietary, © 2018 All Rights Reserved " Time [year]



Questions?
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Case Study 2: Former refinery

Depth to Groundwater: 3 m

Average Groundwater Temperature: 14 °C

LNAPL concentration

(kg/m*"3)
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Methods for Estimating LNAPL Loss

Using thermal gradients
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Methods for Estimating LNAPL Loss

Using thermal gradients

G = G, + G
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Methods for Estimating LNAPL Loss

Using thermal gradients
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Modeling Heat Transfer in Soils
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Modeling Heat Transfer in Soils

( Laws of Nature
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Modeling Heat Transfer in Soils

A simple, yet
realistic geometry
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Modeling Heat Transfer in Soils

.

A simple, yet
realistic geometry

J

¥

Proprietary and Confidential Information
© 2018 All Rights Reserved

Available at:

www.BiogenicHeat.com



Inputs and Outputs
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Can both approaches be reconciled by ?

1. Using the mass balance/ 2. Using thermal gradients
Monod rates

Qutput: Microbial Kinetics-based NSZD Rates
T : : >
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Average Annual Thermal Gradients

Absolute Perfect Imperfect
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