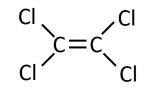
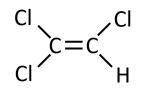
2023 International Symposium on Bioremediation and Sustainable Environmental Technologies May 8-11, 2023 | Austin, Texas

Abiotic Dechlorination in Clay to Support Natural Attenuation

CDM SmithUT - AustinC. SchaeferT. BlountD. TranC. Werth



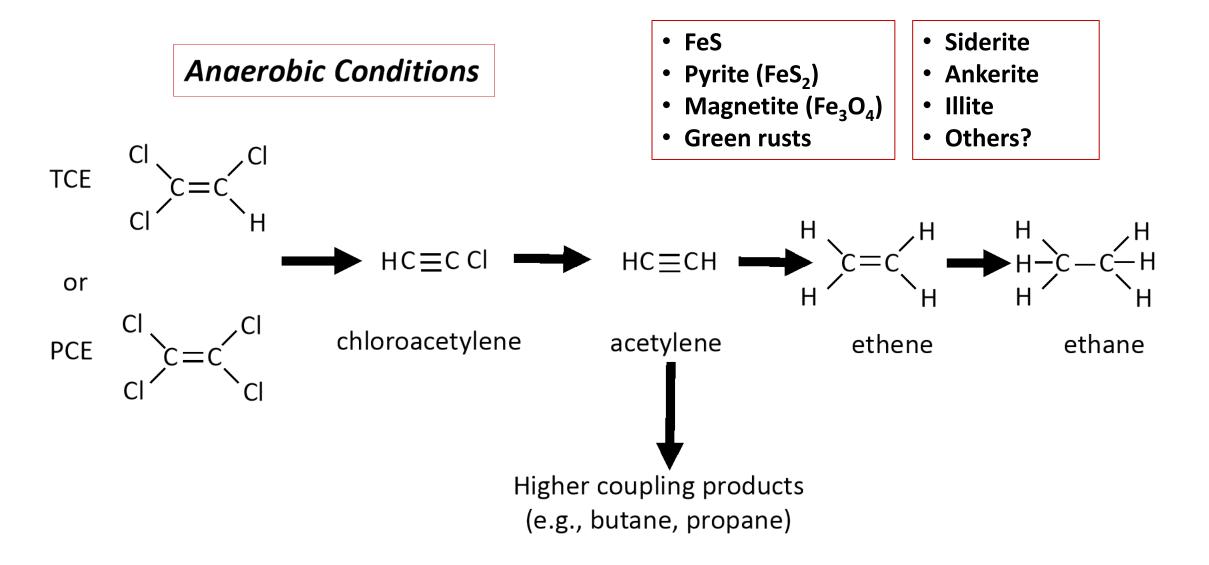
May 10, 2023


Chlorinated Solvents

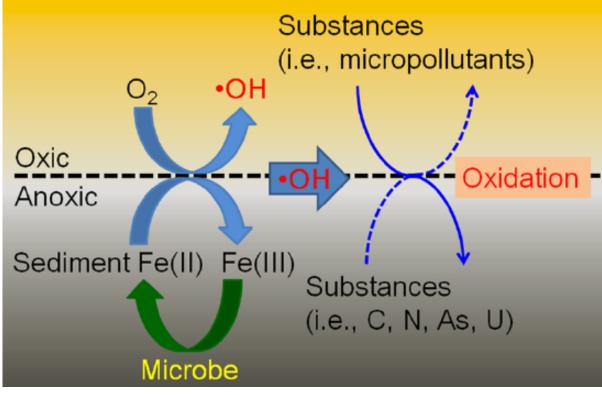
Chlorinated solvents remain a significant environmental challenge:

- Large dilute plumes
- Difficult geologies (back-diffusion)
 - Back-diffusion from low permeability zones

Tetrachloroethene (PCE)



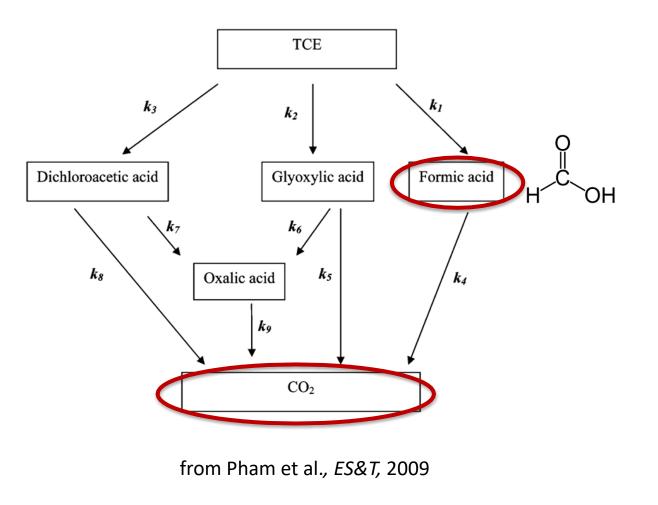
Trichloroethene (TCE)

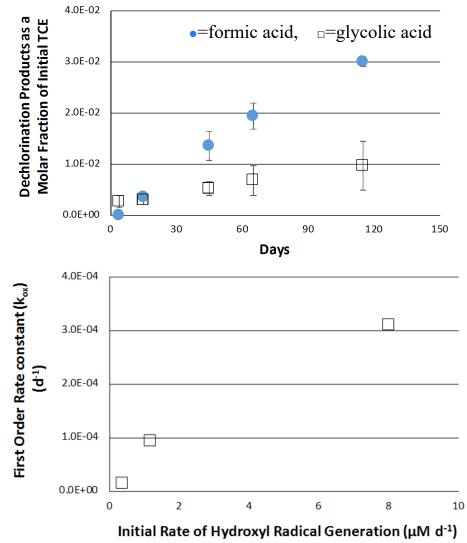

While even very slow rates of dechlorination can be important for natural attenuation, identifying lines of evidence for such transformations can be challenging (especially for <u>abiotic</u> transformations)

How should we screen for these beneficial reactions?

Chlorinated Ethene Reduction via Ferrous Minerals

Chlorinated Ethene Oxidation via Ferrous Minerals




$$\begin{array}{l} \operatorname{Fe}^{\mathrm{II}}_{(\mathrm{pyrite})} + \operatorname{O}_2 \to \operatorname{Fe}^{\mathrm{III}}_{(\mathrm{pyrite})} + \operatorname{O}_2^{\text{-}} \\ \operatorname{Fe}^{\mathrm{II}}_{(\mathrm{pyrite})} + \operatorname{O}_2^{\text{-}} + 2\operatorname{H}^+ \to \operatorname{Fe}^{\mathrm{III}}_{\mathrm{pyrite}} + \operatorname{H}_2\operatorname{O}_2 \\ \operatorname{Fe}^{\mathrm{II}}_{(\mathrm{pyrite})} + \operatorname{H}_2\operatorname{O}_2 \to \operatorname{Fe}^{\mathrm{III}}_{(\mathrm{pyrite})} + \cdot\operatorname{OH} + \operatorname{OH}^- \end{array}$$

Kong et al., ES&T, 2015; Lee et al., ES&T, 2008

Tong et al., ES&T, 2016

TCE Oxidative Transformation via Hydroxyl Radicals Generated from Iron Minerals

Schaefer et al., ES&T, 2018

Field Measurements (7 DoD sites impacted with PCE/TCE)

Sand Clay

Aqueous sample for DO, ORP, turbidity, and H_2O_2

- Clay samples for VOCs & reduced gases
- Mineral analyses

•

- total iron (digestion with HNO₃ and H₂O₂)
- ferrous iron (2.5% HCl at room temp.)
- magnetic susceptibility
- XRD
- Additional cores for bench-scale testing

Bench-Scale Batch Experiments

- 7 TCE-impacted sites
- Mineral-water slurries $(6g/35mL 5 mM CaCl_2)$ •
- Gamma-irradiated soils
- Anaerobic and aerobic test systems ٠
- Triplicates

No

Anaerobic Experiments

Analyze headspace for:

- VOCs
- Reduced gases

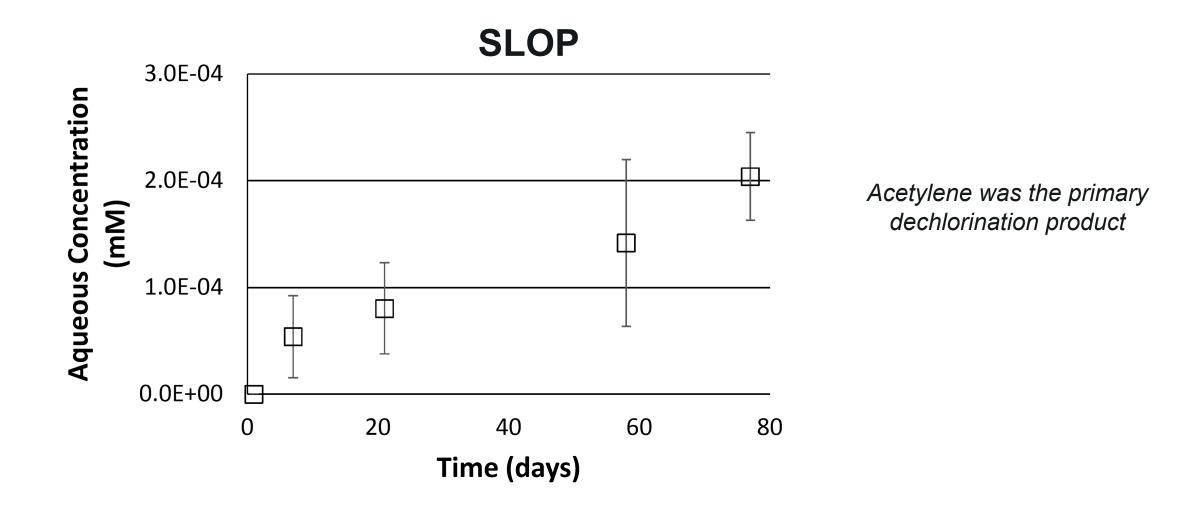
Aerobic Experiments

- No TCE spike ٠
- Monitor •OH generation • using aminophenyl fluorescein method and fluorometer

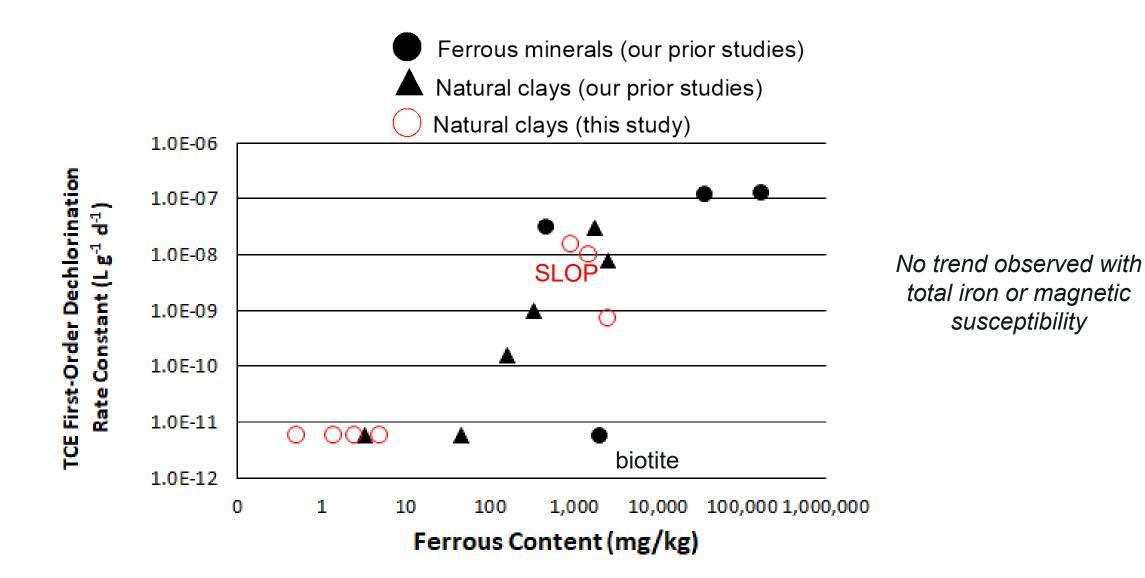
Results: Clay Mineralogy

Property	LCAAP	SLOP	JAX	ALTUS	Longhorn	Minden	PV
% Mineral Content (XRD)	quartz (30); illite+mica (29); illite/smectite (22); plagioclase (7.7); kaolinite (4.5); K- feldspar (3.8); smectite (1.9); hematite (1.3)	quartz (54); smectite (16); plagioclase (7.4); illite/smectite (7.0); kaolinite (6.1); K- feldspar (4.9); illite+mica (2.6); anatase (0.7); rutile; pyrite (0.15)	quartz (63); smectite (18); kaolinite (5.0); K-feldspar (4.3); illite/smectite (4.2); plagioclase (3.5); illite+mica (3.1)	quartz (45); calcite (24); illite+mica (23); plagioclase (7.5); K-feldspar (6.2); chlorite (1.5); hematite (0.8); anatase (0.5);	quartz (55); smectite (22); plagioclase (7.0);illite+mica (7.0); K-feldspar (6.5); kaolinite (1.9)	quartz (69);smectite (14); plagioclase (6.8); K-feldspar (5.1); illite+mica (3.7); kaolinite (0.9)	illite/smectite (33); plagioclase (21); quartz (14); illite+mica (12); K- feldspar (4.5); kaolinite (4.0); chlorite (1.9); calcite (1.8)
Magnetic Suscept. (m ³ /kg)	1.4 x 10 ⁻⁷	9.7 x 10 ⁻⁸	9.6 x 10 ⁻⁸	1.1 x 10 ⁻⁷	1.0 x 10 ⁻⁷	5.0 x 10 ⁻⁸	4.5 x 10 ⁻⁷
Ferrous mineral content (mg/kg) ¹	4.8	57	2,600	1.4	2.4	0.5	930
Total iron (mg/kg) ²	78,000	23,000	18,000	28,000	12,000	12,000	30,000

¹ 2.5% HCl at room temperature
² Acid digestion with nitric acid and H₂O₂


Pyrite Poorly Extracted with Dilute HCI

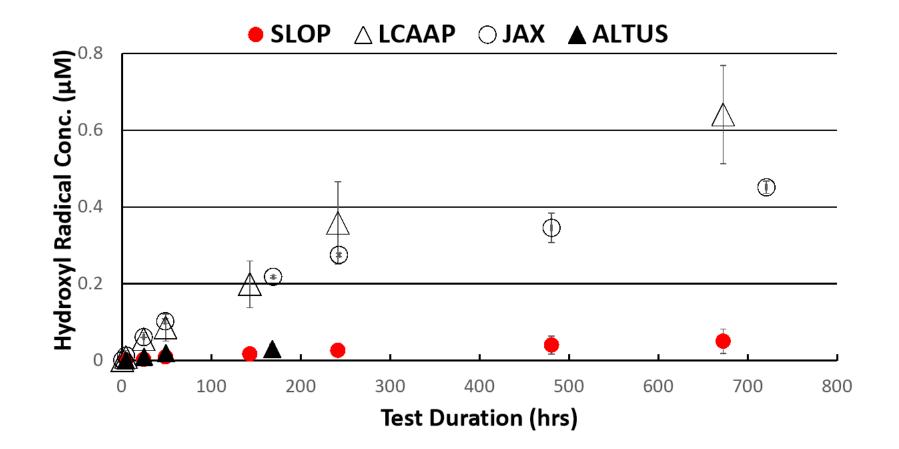
Voelz et al.,	ACS Farth	Snace	Chem	2019	3	1371-1392
VUEIZ EL al.,		Space		2013,	З,	10/1-1092


	Carbonates			(Oxyhydr)oxides						Silicates						Sulfides						
Dissolution Extent Target (100 – 90 %) Moderate (80 – 50 %) Low (50 – 15 %) Marginal (15 – 2 %) Minor (<2 %)	Ankerite	Calcite/Aragonite	Siderite	Ferrihydrite	Lepidocrocite	Akaganeite	Goethite	Hematite (powder)	Hematite (crystalline)	Magnetite	Ilmenite	Nontronite	Illite*	Smectite*	Biotite	Chlorite	Glauconite	Amorphous FeS	Mackinawite	Greigite	Pyrite (synthetic)	Pyrite (natural)
Acetate/Acetic Acid																						
Hydroxylamine-HCl																						
Dithionite]]]]										
Oxalate/Oxalic Acid																						
Concentrated HCl												1112			1111							
HF/Ashed HCl																						
Acid-Chromium																						

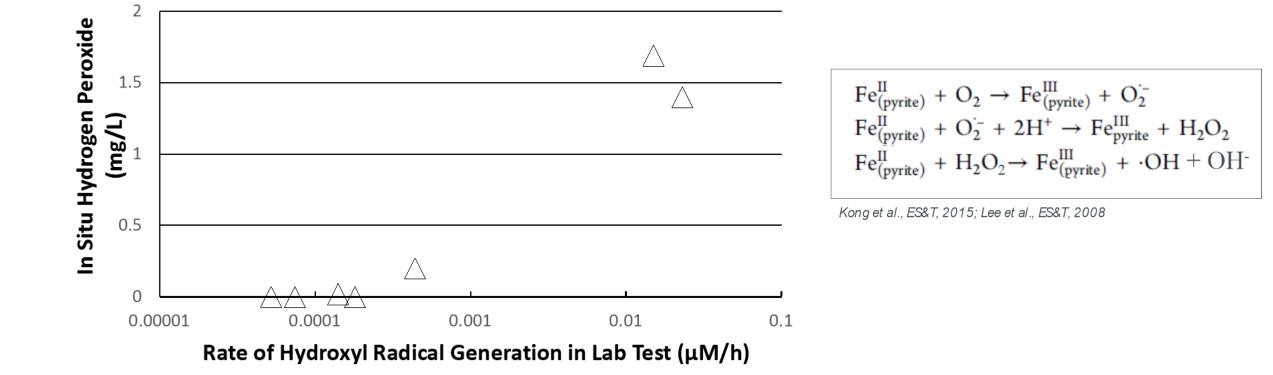
Thus, for clays containing pyrite, Fe(II) is better estimated based on pyrite content

Results: TCE Reductive Dechlorination under Anaerobic Conditions

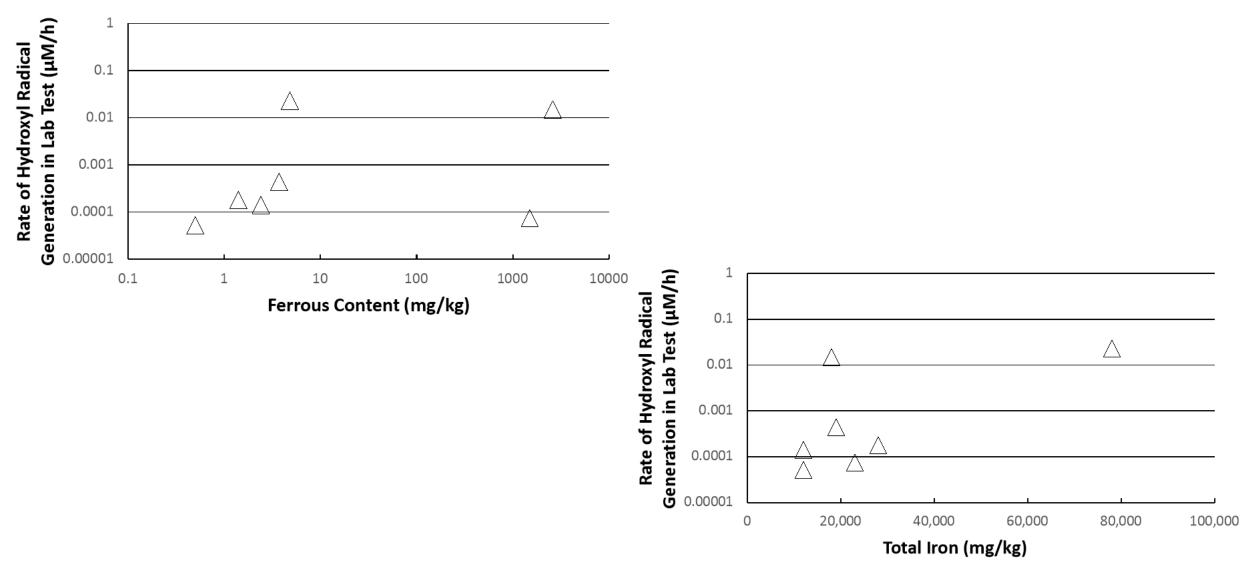
Results: TCE Reductive Dechlorination under Anaerobic Conditions

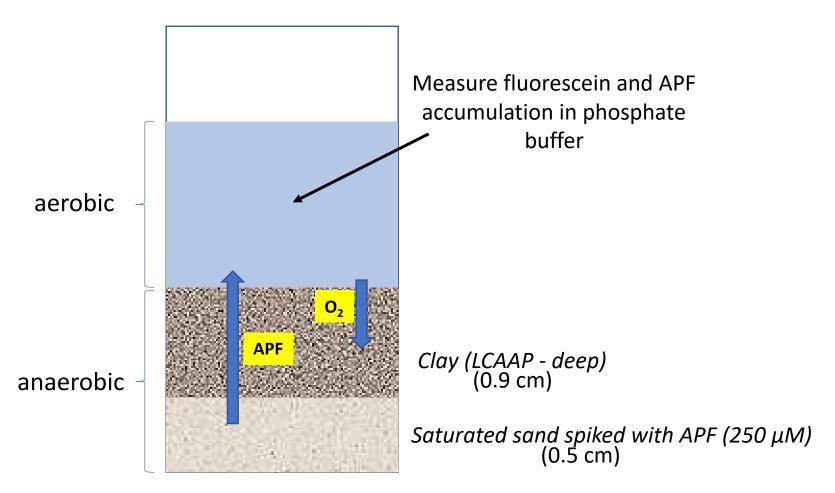


Field Measurements: Reduced Gases

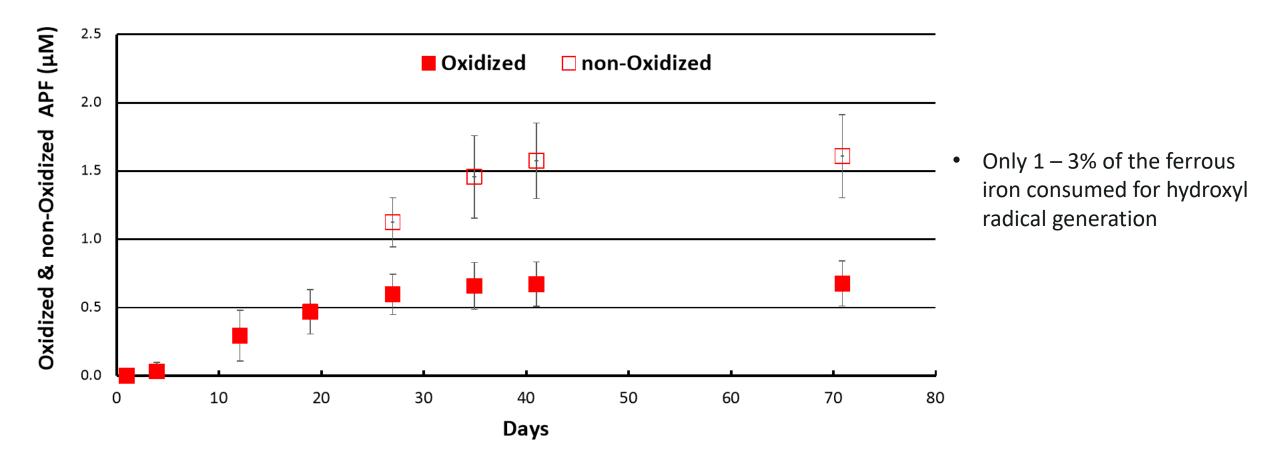

- No acetylene quantified in any field sample, despite acetylene being the predominant reductive dechlorination product
- 5 to 10 μ g/L ethane at most reactive (SLOP) site

Looking for reduced gases in collected field samples may not always be a useful tool for identifying the occurrence of <u>abiotic</u> dechlorination reactions


Hydroxyl Radical Generation: Oxic Conditions


Is this reaction really occurring in situ?

Hydroxyl Radical Generation as a Function of Fe(II) or Total



Back-Diffusion Experiment: Long-term oxidation

Diffusion Experiment Results (preliminary)

Monitoring on-going

Abiotic dechlorination reactions can be facilitated by ferrous minerals

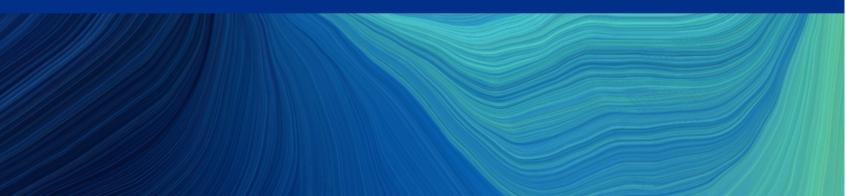
- These reactions can occur under aerobic or anaerobic conditions

Ferrous mineral content, determined by dilute acid extraction, serves as a reasonable predictor for the abiotic reductive dechlorination rate constant

- Exceptions: pyrite and biotite

H_2O_2 may be a good indicator for oxidative abiotic reactions

- Research needed to develop methods to quantify and predict in situ abiotic dechlorination rates


Acknowledgement

Project ER20-5031

Thank You

Charles Schaefer, PhD schaeferce@cdmsmith.co m

Connect with me on LinkedIn!