Polar Organic Chemical Integrative Sampler Allows CSIA of Substituted Chlorobenzenes at Trace Levels

<u>Shamsunnahar Suchana</u>^{1*}, Elizabeth Edwards¹, Line Lomheim¹, Natanna Melo,² Savia Gavazza,² E. Erin Mack³, Elodie Passeport¹

¹ University of Toronto, Canada; ² Federal University of Pernambuco, Brazil; ³ Corteva Agriscience, USA

*Presenting author

Outline

- Background
- Laboratory experiments
- Field application
- Conclusions

Target Semi-Volatile Substituted chlorobenzenes

(di)chloronitrobenzenes CNB & DCNB

(di)chloroanilines CA & DCA

Feedstock for

Found in groundwater, surface water, WWTP effluent, and DWTP

Emerging industrial chemicals

Compound Specific Isotope Analysis (CSIA)

CSIA measures the ratio of heavy and light isotopes (e.g., C) in a molecule (e.g., Benzene)

Isotope signature is expressed as delta value, e.g. $\delta^{13}C$

CSIA for emerging contaminants

Legacy contaminants

Hydrocarbons, chlorinated solvents

High concentration (mg/L) Mostly volatile compounds Small volume extraction

Emerging contaminants

Pesticides, pharmaceuticals.....

Low concentrations (ng/L – μg/L) Semi-volatiles and polar Large volume extraction

See recent review Philips et al. 2022 Journal of Hydrology 5

CSIA to investigate *in situ* **processes**

Limitations of CSIA at low concentrations

- High instrumental detection limit of isotope ratio mass spectrometers
 - Up to 1-10 nmol of carbon on-column
- Solid-phase extraction (SPE) is required for semi-volatiles
- Until recently CSIA mainly limited to
 - Heavily contaminated sites at high mg/L
 - Up to 10 L of water extraction for high μ g/L

- Time and labor intensive
- - Method-induced fractionation
 - Matrix interference

One promising approach is *in situ* passive sampler to preconcentrate at sub-μg/L Polar organic chemical integrative sampler (POCIS)

Polar organic chemical integrative sampler (POCIS)

POCIS preconcentration

Process 1: Aqueous phase diffusionProcess 2: Pore diffusion in PES membrane and HLB sorbentProcess 3: (chemi)sorption in PES membrane and HLB sorbent

Evaluate the potential of POCIS to enable CSIA at trace level environmental concentrations

Specific objectives

- 1. Evaluate sorption- and diffusion-induced isotope fractionation
- 2. Performance evaluation under field conditions

Evaluate the potential of POCIS to enable CSIA at trace level environmental concentrations

Specific objectives

- 1. Evaluate sorption- and diffusion-induced isotope fractionation
- 2. Performance evaluation under field conditions

Lab experimental set up

- POCIS deployed in spiked water (7L)
- Water sampling over time
- Extraction of PES and HLB over time
- Sacrificial setup
- Duplicates with blanks and controls

 NH_2

3,4-dichlonitrobenzene (3,4-DCNB)

Suchana et al. 2022, STOTEN

Sorption- and diffusion-induced isotope fractionation

Sorption- and diffusion-induced isotope fractionation

TORONTO Suchana et al., available in Chemrxiv

Sorption- and diffusion-induced isotope fractionation

- Significant sorption in both sorbent and membrane
- Concentration and isotope equilibrium after 30 days
- Recommended deployment time of POCIS for CSIA is minimum 30 days

Negligible Carbon shift after 30 days

Mostly negligible shifts in sorbent and membrane

Negligible/reproducible Nitrogen shift after 30 days

Reproducible and similar shifts in sorbent and membrane

Negligible/reproducible Hydrogen shift after 30 days

High variability for 3,4-DCA, possibly due to H-bonding

Evaluate the potential of POCIS to enable CSIA at trace level environmental concentrations

Specific objectives

- 1. Evaluate sorption- and diffusion-induced isotope fractionation
- 2. Performance evaluation under field conditions

Field deployment

60 days deployment in constructed wetlands

4L grab sample for SPE

POCIS

Copper

Stainless steel

Suchana et al. 2023, ACS Analytical Chemistry

POCIS and SPE give comparable Carbon signature

- POCIS and SPE are comparable
- Sorbent and membrane are similar
- Detection $limit_{M+S}$ lower than 4L SPE

POCIS and SPE give comparable Nitrogen signature

Stainless Cop

Copper

• Similar results as carbon

Biofilm on membrane does not affect isotope signatures

Biofilm formation on membrane exposed part Diverse and small abundance on membrane than in water

Take home messages

- 1. POCIS is suitable with CSIA for substituted chlorobenzenes
- 2. POCIS and SPE are comparable under field conditions
- 3. One POCIS is equivalent to ~10 L of water extraction by SPE
- 4. Potential for ng/L concentrations CSIA using multiple POCIS

Thank you!

engineers | scientists | innovators

shamsunnahar.suchana@mail.utoronto.ca

UNIVERSITY OF TORONTO Connaught International <u>Awards</u>

