Measurement of Soil Gas to Indoor Air Attenuation Rate Using Radon as a Naturally Occurring Tracer Gas

Jonathan E. Sanders, P.E*, Presenter

Glenn Tofani, P.E*, G.E*

2023 Battelle BioRemediation Symposium Austin, TX

Session D1: Innovative Tools for Evaluating Vapor Intrusion Risk Tuesday, May 9, 2023

*Licensed in CA, Not licensed in all states

Speaker Bio

- Education
 - B.S. Chemistry / Applied Mathematics (2008 St. Edwards University, Austin, TX)
 - M.S. Civil Engineering (2015 Texas A&M University, College Station, TX)
- Work History
 - 10 years consulting (2008 2017, 2021-current)
 - 5 years Regulator (Alameda County, 2017 2021)
- Registered Civil Engineer (CA Lic No C91063)
- Relevant VI Experience
 - VIMS/SVE design engineer
 - Developed guidance documents for VIMS design, construction CQA, commissioning sampling, and long-term stewardship at Alameda County Department of Environmental Health

Overview

- 1. Problem Statement & Objective
- 2. Background
- 3. Limitations of Traditional TO-15 sampling
- 4. Ideal Solution: Conservative Tracer
- 5. Radon as a Conservative Tracer
- 6. Methodology
- 7. Analysis
- 8. Sources of Error
- 9. Closing

Problem Statement and Objective

- Characterization of VI Risk via traditional methods is prone to issues:
 - False Positives / Interference
 - Effects of Building Operations
 - Weather / seasonal effects
 - Data Density
 - \$\$\$
- Characterization of VI Risk with radon as LOE
 - Robust and resistant to interference
 - Time-series data
 - Versatile (bulk VI & point of entry identification)
 - Cost effective

Background

100,000

- Difficult to control/ eliminate indoor/outdoor air sources, particularly in occupied spaces
- Example: USEPA Office of Chemical Safety and Pollution Prevention > 450 consumer products with PCE

False Positives

•

Geotechnical & Environmental Engineers

Sample density rarely meets/exceeds density of homogeneous air space.

Locations of points of entry matter!

The location and magnitude of source material maters!

- False Positives
- Sensitive to BP & Building Operation
- Sample Density and Anisotropy

Sample density rarely meets/exceeds density of homogeneous air space.

Locations of points of entry matter!

The location and magnitude of source material maters!

- False Positives
- Sensitive to BP & Building Operation
- Sample Density and Anisotropy

- False Positives
- Sensitive to BP & Building Operation
- Sample Density and Anisotropy

- Laboratory Reporting Limits
- Default α typically 0.03 to 0.001
 - $C_{SG} > 10,000 \text{ x PQL}_{IA}$

- False Positives
- Sensitive to BP & Building Operation
- Sample Density and Anisotropy
- Quantification Limits

Ideal Solution: Conservative Tracer

		10-12	Radon
•	No sources other than VI	Poor	Good
•	Detectible in indoor air with low reporting limits	Good	Excellent
•	Distinguishable from ambient air	Good/Poor	Good/Poor
•	Conservative	Poor	Excellent*
•	Homogeneous and isotropic in sub-surface	Poor	Excellent
•	[Tracer] _{SG} >> [Tracer] _{IA} (at least 3 OOM)	Varies	Good
•	Sampled selectively	Excellent	Excellent
•	Sampled continuously	Poor	Excellent
•	Sampled cost effectively	Poor	Excellent
•	Highly diffusive	Varies	Excellent
		·	

*Radon is only conservative for sufficiently low residence times

Radon as a Conservative Tracer

Naturally Occurring & Abundant

Soil gas concentrations are proportional to SA/M ratio

	Outdoor Air [pCi/L]	Indoor Air [pCi/L]	Soil Gas [pCi/L]	Groundwater [pCi/L]
Lower Value	<0.1	<1	20	100
Typical Value	0.2 0.4 ^[2]	1 to 2 1.25 ^[2]	200 to 2,000	
Upper Value	30	3,000	10,000	3,000,000

Adapted from "The Geology of Radon", USGS, 1992 unless otherwise noted

[2] Marcinowski et al, "National and regional distributions of airborne radon concentrations in U.S. homes", Health Phys. 66, 699-706, 1994

Unites of Measures: Curie (Ci) or Becquerel (Bq) 1 pCi = 2.2 decay/minute

Zone Designation

is 4 picocuries per liter (pCi/L) or higher. Consider fixing if your level is between 2 and 4 pCi/L. The Map of Radon Zones was developed using data on indoor radon measurements, geology, aerial radioactivity, soil parameters, and foundation types.

- Sensitivity
 - CPH
 - Standard Deviation & Accuracy
- Resolution
- Measurement Rate
- Thoron?

Location	Average [Rn] _{sg} (pCi/L)	Average [Rn] _{IA} (pCi/L)	Average [Rn] _{AA} (pCi/L)	Protection Factor	Attenuation Factor
SGP-1	179	0.60	0.52	2,200	0.00045

40 x dilution from active SSDS

6,900 PF from EBS

25

Barometric Pressure (Inches of Water)

Error

- Radon sources
 - Earth materials
 - Glass
 - Welding
- Signal to Noise Ratio and Measurement Interval
- Decay?

Error

CMFR, ideal mixing, incompressible fluid, at steady state (1st order decay)

Closing

- Radon is a tool in the toolbox for MLOE investigations
- Limited applications for soil gas, excellent applications for sub-slab gas
- Not a substitute for TO-15 data during initial characterization
- Potential substitute for TO-15 in long-term monitoring

Jonathan E. Sanders Principal Engineer jonathan@geokinetics.org (925)791-0865 Glenn Tofani Principal Engineer glenn@geokinetics.org (949)413-1113

