High Resolution Site Characterization and Bioremediation in Fractured Rock

Nathan Thacker Senior Geologist AST Environmental, Inc.

Trap & Treat® Remediation Process (The Approach)

Review and Design

Concerns

- Long well screens; cross bedrock interface; multiple zones
- Cased wells with constructed filterpack
- No groundwater characterization data
- Lithology logged from chips expelled during air rotary → need rock cores

Preliminary Designs and Estimates Based Upon:

- No differentiation of high/low concentration intervals
- Estimated porosities and hydraulic gradients
- Homogeneous stratigraphy
- Groundwater mass only

Remedial Design Characterization (RDC)

Surface Geophysics

- 2D Electrical Resistivity
- Seismic

Characterization \rightarrow Injection Wells

- Open Borehole with surface casing
- Rock Cores logging and sampling of matrix

Borehole Geophysics

• Caliper, Acoustic Televiewer, Downhole Camera, etc.

Groundwater Characterization

- Pumping Tests
- Discrete Interval Analytical Sampling
- Response Data Transducers

Historical Data and Site Layout

- Shallow bedrock
- Benzene higher in shallow wells near source
- Highest concentration MW-U – deep screen
- Shallow wells are most impacted further down gradient MW-7, MW-8

Surface Geophysics

RDC - 2-D Electrical Resistivity

Ē

Calloway Creek Limestone

ALSO ALL THE ALL

Garrard Siltstone

RDC - Rock Cores and Open Boreholes

Rock Cores

- Similar to dual tube prior to HSA
- Structure, texture, and variation in lithology visible in log perspective
- Look, touch, hold, or sample what you see in 2D wireline logs or downhole camera
- Matrix samples, collection
- Forensics?

Surface Cased Open Borehole Wells

- Characterization \rightarrow Injection Wells
- Multi-purpose access: not just diluted dissolved chemistry monitoring

What is a fracture? What is a feature?

- When associated to caliper logs...
 - Bedding plane separation
 - Joint/Fault
 - Lithologic contact
 - Hydraulic Zones (using our tools)
 - Producing
 - Receiving
 - Erosional Plane
 - Enlargement
 - Drilling-induced feature?
 - Total Porosity vs. Effective Porosity

Well-sorted sedimentary material (Alluvium of the South Platte River)

Poorly sorted sedimentary material (Dawson, Denver, Arapahoe aquifers)

Fractured crystalline rocks (Pikes Peak Granite)

Soluble rock-forming material (Leadville Limestone)

Colorado Geological Survey [CGS], 2002.

RDC - Borehole Geophysical Logs

Standard Details

- 3 arm caliper*
- Natural Gamma
- Resistivity
- Fluid Temperature + Conductivity

Additional Details

- OTV and ATV*
- Heat Pulse Flow Meter

Fracture Determination

- What is an active fracture?
- Determination
 - Cores
 - ATV/OTV
 - HPFM
- "Walking the Packer"
- "Low dead volume" & sampling time
- Smaller straddles allow for individualization of fracture network
- Other methods
 - Packer-Slug test
 - Pump test

Borehole Camera

Borehole Camera

RDC - Borehole Geophysical Logs

RDC - Downhole Camera

RDC – GW Characterization

Aquifer Testing

- Pumping Tests
- Discrete Interval Analytical Sampling
- Response Data Transducers
- Many fractures are clustered at intervals
- Conventional packer strings make it very difficult to isolate individual features

- 12 -

9

6

3

0

3

6

- 9 -

-12-

- Custom Straddle Packer String
 - Pressure transducers
 - Integrated pump
 - Discrete sampling or injection

Rock Cores

- Structure, texture, and variation in lithology visible in log perspective
- Another level of data to use when updating the CSM
 - Look, touch, hold, etc. what you see in 2D wireline logs or downhole camera display
 - Sample Rock Matrix

Rock Matrix Sampling

Historical Data and Site Layout

- Shallow bedrock
- Benzene higher in shallow wells near source
- Highest concentration MW-U – deep screen
- Shallow wells are most impacted further down gradient MW-7, MW-8

Rock matrix samples vs groundwater results

Sample ID. No.	MW-U	MW-U	MW-U	MW-U
Date Sampled	5/2/2013	5/2/2013	5/2/2013	5/2/2013
Sample Depth	12-12.75	12-12.75'	19.75-20'	22-22.25
		(2nd Sample)		
Units	ug/kg	ug/kg	ug/kg	ug/kg
МТВЕ	374 (4)	336 (5)	ND (6)	ND (5)
Benzene	1420 (4)	1390 (5)	ND (6)	16.5 (5)
Toluene	2090 (4)	2580 (5)	ND (6)	7.67 (5)
Ethylbenzene	417 (4)	385 (5)	ND (6)	ND (5)
m/p-Xylenes	1330 (4)	1350 (5)	21.9 (6)	7.46 (5)
o-Xylenes	641 (4)	579 (5)	9.57 (6)	ND (5)
1,2,4-Trimethylbenzene	114 (4)	432 (5)	15.2 (6)	5.04 (5)
Naphthalene	37.7 (4)	118 (5)	ND (6)	ND (5)
TVPH (ppm)	50.8 (2)	46.7 (2.5)	260 (3)	15.8 (2.5)

MW-U

		33.8	Benzene
9/17/12	20.86		6.4
6/29/12	14.27		9.3
9/15/11	12.50		3.4
2/18/11	12.35		5.9
6/30/10	21.0		6.3
3/19/10	12.24		5.7
7/7/09	12.32		10
2/12/09	12.92		1.8
5/22/08	12.19		2.2
11/19/03	12.31		3.2
12/3/02	12.50		0.5
9/11/02	11.17		0.021
6/19/02	8.67		0.66
3/18/02	2.08		0.052
11/13/01	19.30		0.00066
8/14/01	10.58		2.8
1/3/01	15.00		0.68
7/7/99	11.05		0.64
3/2/98	10.40		4.6
12/17/97	33.81		0.6

The highest benzene concentration from adjacent discrete gw sampling was 474 ug/L

RDC – Rock Matrix vs Groundwater Concentrations

RDC – Rock Matrix Sample

	CH-32 Discrete Intervals			vals CH-32		
Sa	mple Depth	TCE (ug/L)	TCE (ug/Kg)	TCE (ug/L) Water @ 34.80'	TCE (ug/L) Water @ 18.70'	
	7	Dry	774			VW-24 26.4 TCE
	10.6	Dry	4780			<0.5
	15	Dry	197			0
	20.6	Dry	25,400		a start to	
	22.7	Dry	336	(Sec.)		CH-32
	27.4	Dry	78.0	204	26,400	

Thank You & Q&A

Nathan Thacker

nthacker@astenv.com

Follow AST and RPI on LinkedIn!