Quantitative High-Resolution Site Characterization (qHRSC) and Lessons Learned: An Example

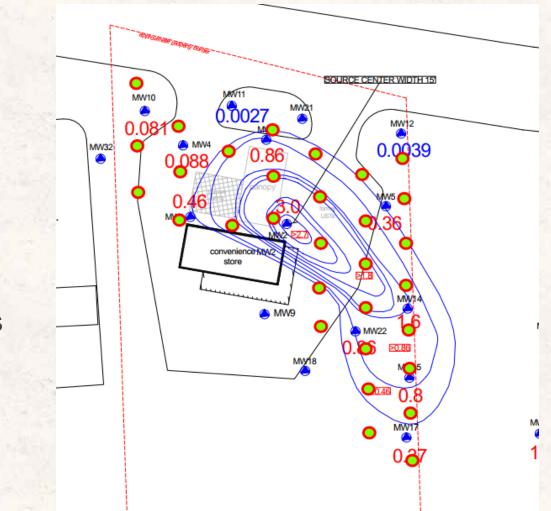
Derek Pizarro, CPG Senior Geologist

Characterizations

- Conceptual Site Model
 - Evolving visual and/or written summary
 - Develop remediation plan
- High-Resolution Site Characterization (HRSC)
 - Rapid data collection
 - Sensing tools
 - Define "the box"
 - Unique abilities, specifications, and limitations
- Remedial Design Characterization (RDC)
 - Spatially and vertically dense soil and GW sampling
 - Analytical data
 - Contaminant concentrations and locations
- qHRSC

This presentation focuses on overburden characterization. Other methods are used for bedrock/PWR/saprolite/till.

What is qHRSC?


- Remedial design-focused site characterization program
- Bridges data gaps created by:
 - Historical characterization and sampling
 - High Resolution Site Characterization (HRSC) tools
 - e.g. MIP, OIP and UVOST®
- Provides a 3-D, quantitative model
 - <u>ACTIONABLE DATA</u>
 - Project decisions
 - Develop stoichiometric remedial approaches
- Set expectations
 - Time
 - Budget
 - Remediation endpoint(s)

Data Review & Preliminary Design

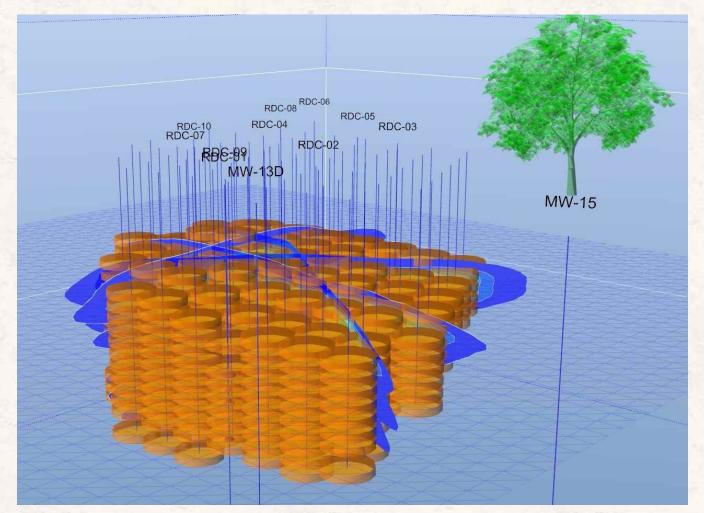
- Collaborative review
 - Client, stakeholder(s)
 - Soil and groundwater data
 - Geologic/hydrogeologic data
 - Data is perishable
- "What's the story?"
- Identify data gaps
- RDC and HRSC
- Preliminary design and approach

RDC Example

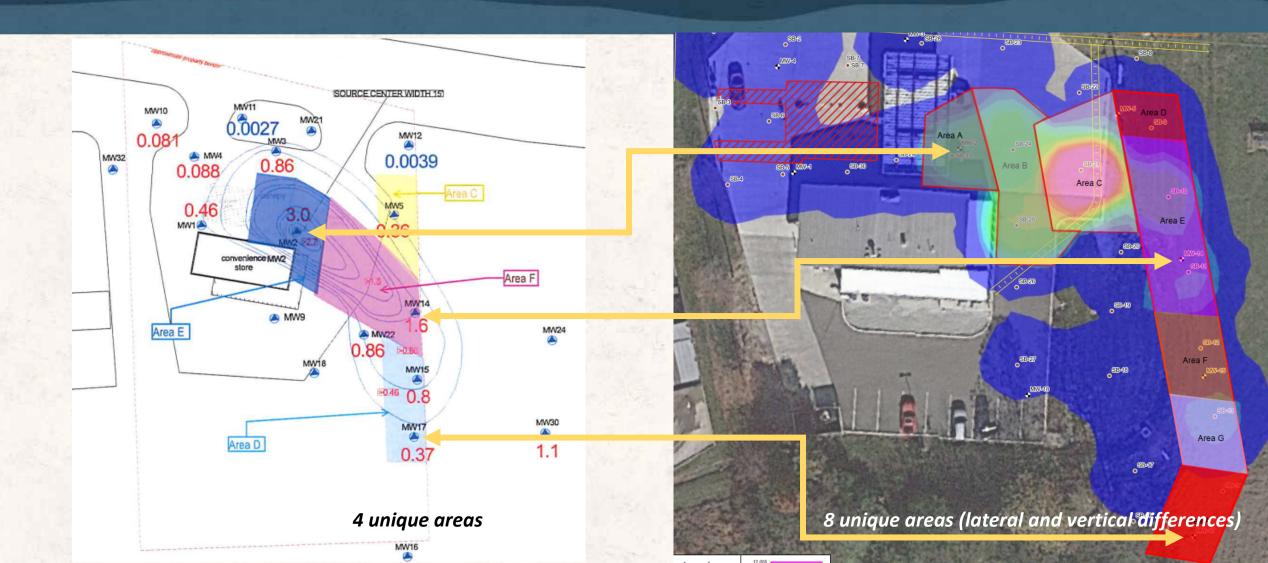
- Existing
 - Quarterly GW monitoring
 - Limited soil data (10+ years old)
- 31 high density soil borings
 - Quantify (and speciate) contaminant mass
 - 209 soil samples
 - Twinning targeted borings adjacent to MWs
- Sample existing MWs
- Trimble to survey locations
- Project Support Lab

Project Support Laboratory

- 6 GC/MS (Volatiles) 8260b, TVPH
- 1 GC/MS (Semi-volatiles)
- 1 GC ECD SCVOC
- 1 GC FID/PID (TPH-DRO)
- 1 Heated Headspace VOC GC/FID
- 1 HPLC
- 2 IC (Gradient Pump)
- Micromeritics ASAP 2010 Chemisorption
- Pro bono (RPI)



3-D Quantitative Model


- Incorporates
 - Qualitative and quantitative soil and groundwater data
 - Lithological information from boring logs
 - Display distribution of contaminants
 - Hydrogeological frame-work of the site
 - HRSC as appropriate
 - e.g. MIP = qualitative
 - Extrapolation of confirmation sampling is still not quantitative data
- Integrates traditional qualitative models and remedial design

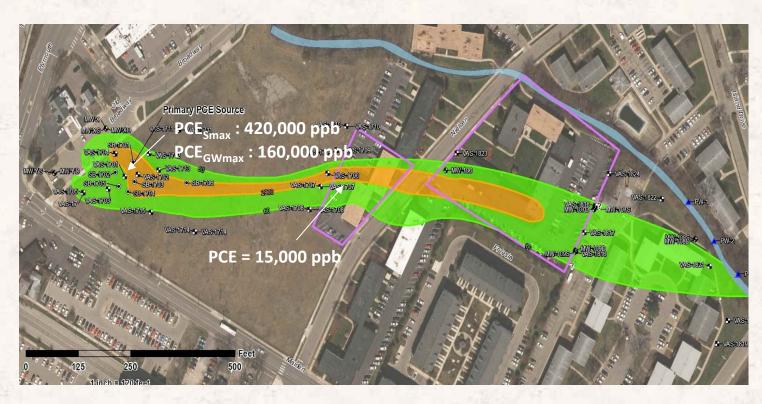
3-D Remedial Design Model

- Remediation approach(es) applied to quantitative model
- Easy visualization
- Updated real-time in the field
 - Flexible decisions
 - Adaptable trajectory
 - Step-outs, TWs, etc.
- Surgical
- First discussion point
- "See the problem"
- Easy communication

Optimization: Preliminary vs. Final Design

qHRSC Case Study

Broadway Redevelopment Ann Arbor, Michigan


Brownfield Redevelopment Project

Special Thanks - Agnes Taylor and Mark Quimby, SME

- Developed since at least the late 1800s
 - City block
 - Two former dry cleaners
 - Car wash
 - Junkyard operations
 - Other commercial and residential uses
- Various investigations on- and off-site
- Env. challenges ≠ redevelopment
- Significant chlorinated solvent contamination - soil and groundwater
 - Source = Broadway coin laundry
 - Operated from 1961 through early 2000s

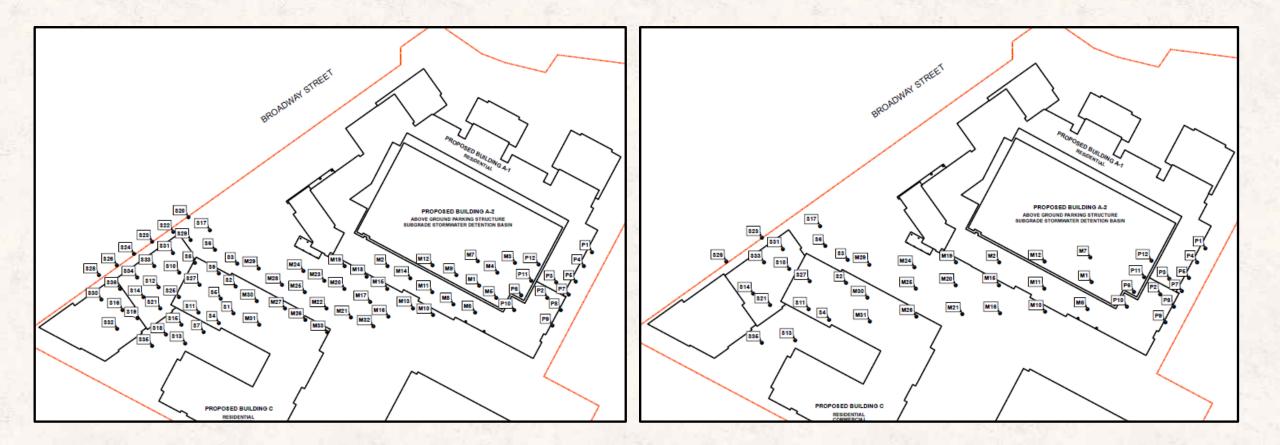
CVOC Plume

- Fill underlain by *variable* sand, silts, and clays
- Groundwater
 - Encountered 6 to 13.5 ft-bgs.
 - Extended to at least 40 ft-bgs.
- Eastward groundwater flow
- Impacts
 - Up to 33 ft-bgs. west
 - Up to 16 ft-bgs. east
 - Off-site migration

Existing Data vs. Data Gaps

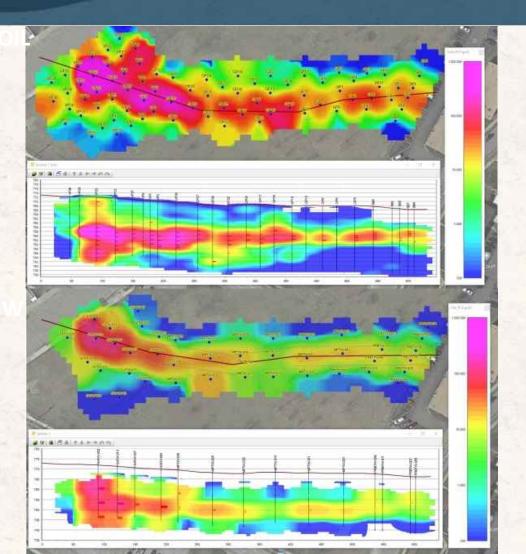
- Limited, fragmented data sets
 - Soil and groundwater
 - Contaminant conditions
- Option 1
 - Rely on existing source data
 - Model potential contaminant flux (30 yr.) through PRB
 - High uncertainty

Option 2 – qHRSC Program

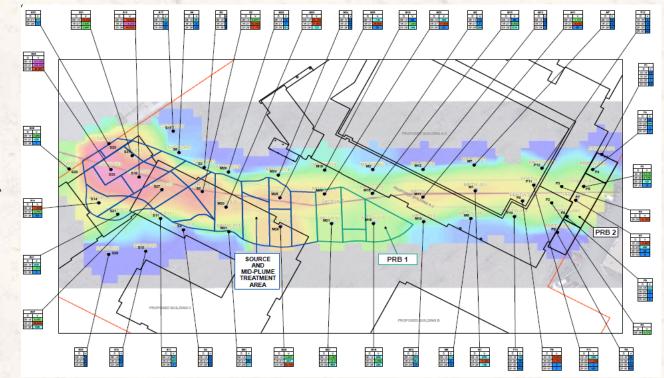

- Discern cVOC mass in soil/groundwater at source, mid-plume, and property line (mass distribution)
- PRB design based on known location and character of PCE mass
- High confidence in remedy (selected)

RDC

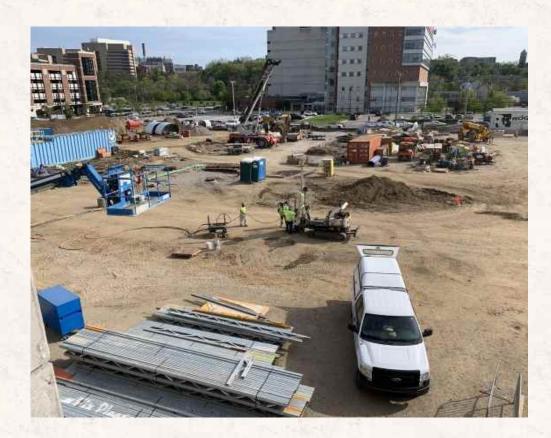
- 79 soil borings to ~40 ft-bgs.
 - Logged soils
 - Sampled every 2 vertical feet
- 46 nested GW well clusters
 - 142 individual wells sampled
 - Slug tests
- 1,120 soil and 185 groundwater samples
 - cVOCs; speciation
 - Dissolved gases
 - Anions
- Confirmed
 - Hydraulic conductivities
 - Calculated seepage velocities and gradients
 - Soil mass; mass flux



Soil Borings & Nested Implant Clusters


qHRSC Findings

- 4,125 lbs. of PCE present in a 60 ft band
- Soil concentrations higher than 'old' data
 - 4,640,000 ppb source area
- Magnitude of GW concentrations on par...
 - ...but more pervasive
 - 137,000 ppb in source
 - 14,000 27,000 ppb in axis of mid plume
- 99% of mass was PCE
- <u>Very</u> little natural degradation (GW = oxic)
- Refined soil profile and hydrogeology


Ability Gained: Mass-Driven Treatment Design

- Source & Mid-Plume CAT 100
 - Loadings designed on cVOCs/DNAPL
 - Eliminate high-mass areas
 - Capable of managing oxic environment
- PRB1 CAT 100
 - Design: source area mass flux
 - Design: cVOC mass within PRB1 footprint
 - 5-year lifetime
 - Seepage velocities calculated (slug tests)
- PRB2 BOS 100®
 - Mass within footprint of proposed Building A
 - Mass present within footprint of PRB2
 - 30-year lifetime
- Received \$1 million EGLE grant
- Added source area treatment
- Extended longevity of PRBs

Implementation

- Approach allowed for a mass-driven design
- Customized to the site
- Increased accuracy
- Pilot Study
 - CAT 100 as source
 - PRB1 treatment media
 - Dec 2018 through Feb 2019
- Full scale injections
 - Spring-Summer 2019
 - Concurrent with construction/redevelopment
- Fall 2022
 - Average PCE reduction in source and PRB1 of 99.99%
 - Average PCE reduction in PRB2 of 96%

Lessons Learned From qHRSC Programs

- Budget constraints?
 - Catch-22?
 - Hobson's choice?
- Limited, aged, or no information...?
 - <u>Quantitative</u> data
 - Soil data
 - Geology or hydrogeology
 - Data is <u>perishable</u>!
- HRSC pitfalls
 - Not "wet chemistry"
 - Correlation data is limited and margin of error
 - "Tool is a tool"
- 3-D imaging underutilized
 - Develop remedial strategies
 - Relay complex data sets to stakeholders

- Close data gaps
- Set Expectations
- Plan for success
- Adapt with the unexpected
- Living Models/Summaries
 - CSM
 - RDC
- Optimization =
 - Discovering "new" problems
 - Eliminating existing problems
 - Data is data
 - Data drives optimization
 - Optimization drives injections
 - Injections drive success

Questions?

Derek Pizarro, CPG dpizarro@astenv.com 610.517.8242

Bill Brab, PG, CPG bbrab@astenv.com 859.321.2171

Duane Guilfoil, PE dguilfoil@astenv.com 859.991.1456