Integrating Diverse High-Resolution Data Sets to Assess Aquitard Integrity in a DNAPL Contaminated Sedimentary Rock Aquifer System

IOWA

Jessica Meyer and Beth Parker Battelle Bioremediation Conference May 8-11, 2023

Acknowledgements

Lucas Ribeiro **MASc 2016**

Chris Morgan MASc 2018

Modeling Collaboration (2010-now)

Funding and in-kind support provided by:

Aquitard Integrity

The degree to which an aquitard is protective of water quality in aquifers

Chlorinated Solvent DNAPLs Find Pathways Through Aquitards

Pankow and Cherry, 1996

Chlorinated solvent DNAPLs can enter small pores/fractures allowing them to migrate to great depths because they:

- are much heavier than water
- have low viscosities
- have low interfacial tensions

DNAPL Contamination in a Sedimentary Rock Aquifer System

ONAPL source zone

- Max extent dissolved phase plume
- O Flow model domain

8 km

Mixed Organic Contaminants

- Chlorinated solvents
- Benzene, toluene, xylenes
- Ketones

Mixture is a **DNAPL** Dense Non-aqueous Phase Liquid

Mixed Organic Contaminants DNAPL Source Zone and Plume

Lithostratigraphy

East

Portion of the Eau Claire Formation Recognized as a Regional Aquitard

Schematic Contaminant Distribution

st

Research Questions

• Why did the DNAPL stop its downward migration?

• How many high integrity aquitards with respect to DNAPL occur between the contamination and the regional aquifer?

• What features create high integrity aquitards with respect to DNAPL in sedimentary rock systems?

Aquitard Units Difficult to Identify from Bulk K Measurements

• Bulk K estimates from slug tests and pumping tests

 Results represent the horizontal component of K

 Bulk K_h not effective for identifying aquitards

The hydraulic head distribution is a reflection of the K distribution

Meyer et al. 2016, JOH

Collect high resolution head profiles

Meyer et al. 2016, JOH

Meyer et al. 2016, JOH

Meyer et al. 2016, JOH

Head Profiling Technique Delineates Multiple Aquitards

Aquitard Integrity Metrics

- 1. Thickness
- 2. Continuity
- 3. Bulk K_v
- 4. Integrity with respect to DNAPL
- 5. Integrity with respect to dissolved phase contaminants

Estimating K_v Using a 3-D Groundwater Flow Model Calibrated with Head Profiles

K Data Indicates Substantial Anisotropy for Most Aquitards

- HGU8 (Upper Tunnel City Grp. aquitard) has the lowest K_v
- K_v are generally 1-3 o.m. lower than K_h for each aquitard

• Aquitardifers !!!

Meyer et al., 2023, in submission

K Data Indicates HGU8 is the Highest Integrity Aquitard

Meyer et al., 2023, in submission

Research Question

Where did DNAPL accumulate within the bedrock and is it consistent with the aquitards delineated based on head profiles?

Modified from Guilbeault et al. 2005 for a fractured bedrock setting

Meyer et al., 2023, in submission

Core Sampling for Vertical Contaminant Distribution

Source Zone Data Collection

High Resolution Research Stations

- <u>Current</u>
 - Abandoned

Conventional Wells

- No pumpable DNAPL
- Pumpable DNAPL
- Other monitoring well

• Contaminant concentration profiles do not indicate any important aquitards, accumulation zones, above the HGU8 aquitard

• The DNAPL did not accumulate on top of the HGU8 aquitard

• The DNAPL accumulated in and migrated to the bottom of the HGU8 aquitard but did not migrate into the underlying aquifer

What are the Characteristics of the Secondary Porosity Features?

Vertical Boreholes Underrepresent Vertical Fractures

from Munn (2012)

Outcrop Fracture Characterization Approach

Fracture Network Contrasts in Tunnel City Group

Ribeiro, MASc, 2016

Mechanical Interface Restricts Vertical Flow

Fracture Network Contrasts in Tunnel City Group

Ribeiro, MASc, 2016

Mechanical interfaces can serve as important aquitards by stopping the downward migration of DNAPL

Plume is 3 Kilometers Long

Lateral transport of contaminants in an anisotropic aquitard prevents vertical spreading of the plume as it migrates downgradient

Multiple High Integrity Aquitards

Lithostrat	MFI & UN	HGUs	Coi On	nt. Off	Vert. 10 ⁻³	Grad. 10º	Vert. Grad. Direction W E	Kv & m 10 ⁻⁹	& Kh [*] /s 10 ⁻³	Anis 10º	otropy 10⁴	Fracture Networks	Contaminant Phase & Mass Distribution W E	Aquitard Integrity
SP Fm. SL Fm. SL Fm. Tunnel City Grp.		11 9 8 7	-10 `8/7	9/8										Low Low Highest Moderate
Wonewoc Fm.		6 5 3	-4											High Moderate
Eau Claire Fm. Mt. Simon Fm.		2										?		High

Meyer et al., 2023, in submission

Key Insights into Shallow, Fractured Sedimentary Rock Aquitards

• Thin units with moderate K_v and surfaces representing poor vertical connectivity can be high integrity aquitards with respect to DNAPL

• Anisotropy can enhance the integrity of aquitards with respect to the DNAPL and dissolved phases

• Long screened wells and other conventional methods are likely to miss important aquitards in shallow, fractured sedimentary rock

Questions?

jessica-meyer@uiowa.edu

https://jessica-meyer.weebly.com/

 ∇

Why High Resolution?

High Resolution Design

Westbay Multilevel System

✓ monitors 129.5 m of bedrock

✓46 monitoring zones

✓ 3.6 zones per 10 m

✓ 32% sealed

Vertical Gradients

- Vertical gradients in units defined as aquitards are larger than in units defined as aquifers
- The largest vertical gradients are observed across HGU2

Geologic Characteristics of the Upper Tunnel City Group Sandstones

