

Where is the Vinyl Chloride? Alternative Natural and Enhanced Degradation Pathways for Chlorinated Solvents

John R. Hesemann, PE

Battelle 6th International Symposium on Bioremediation and Sustainable Environmental Technologies

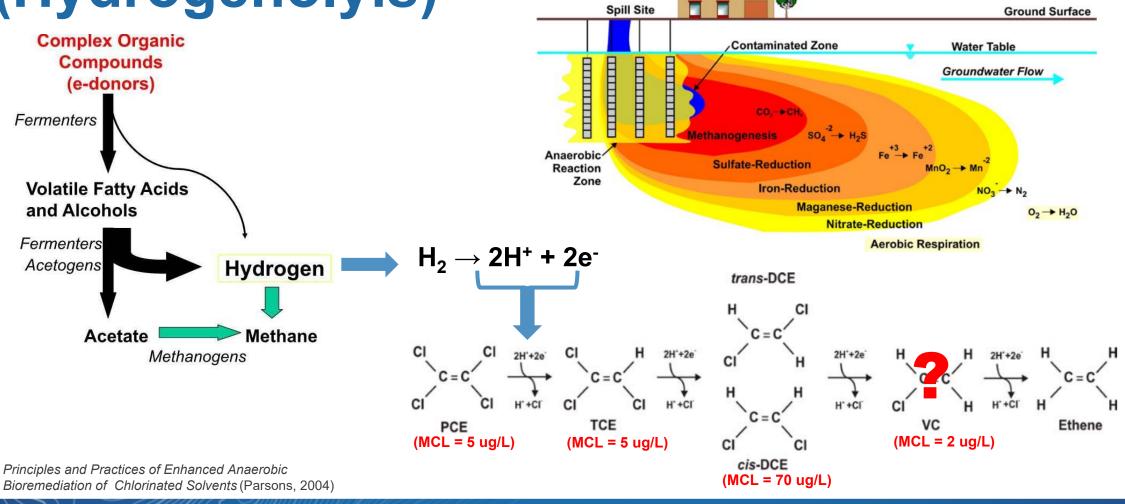
Abstract #407

Session: D9. Tools for Site Assessment and Bioremediation Monitoring

May 11, 2023

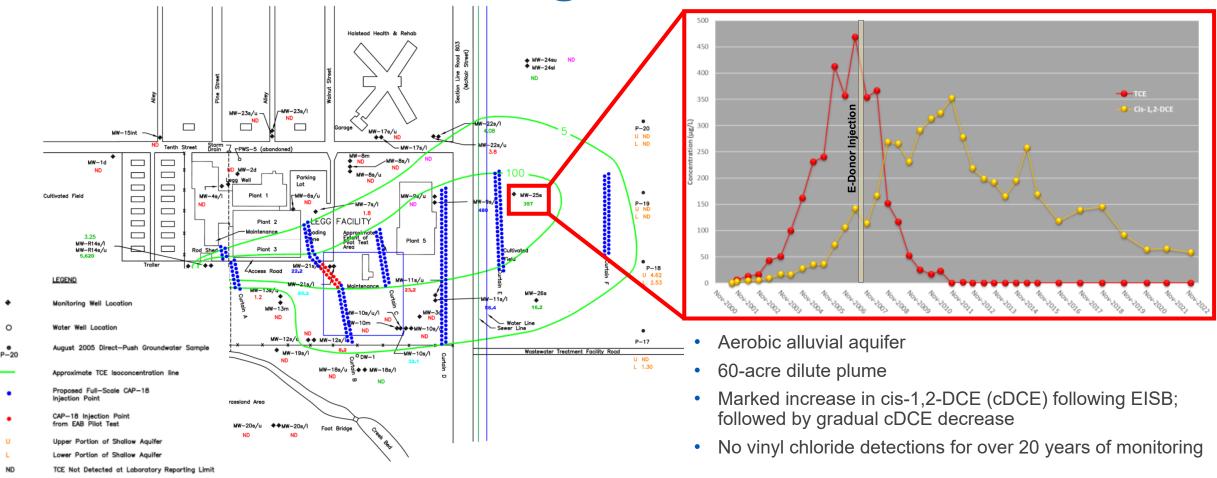
Outline

- Overview of Chlorinated Solvent Degradation Pathways
- Where is the vinyl chloride?
 - Active Manufacturing Site Central Kansas Alluvial Aquifer
 - Former Manufacturing Site Southern California Colluvial Aquifer
- Conclusions / Lessons Learned
- Questions



Overview of Chlorinated Solvent Degradation Pathways

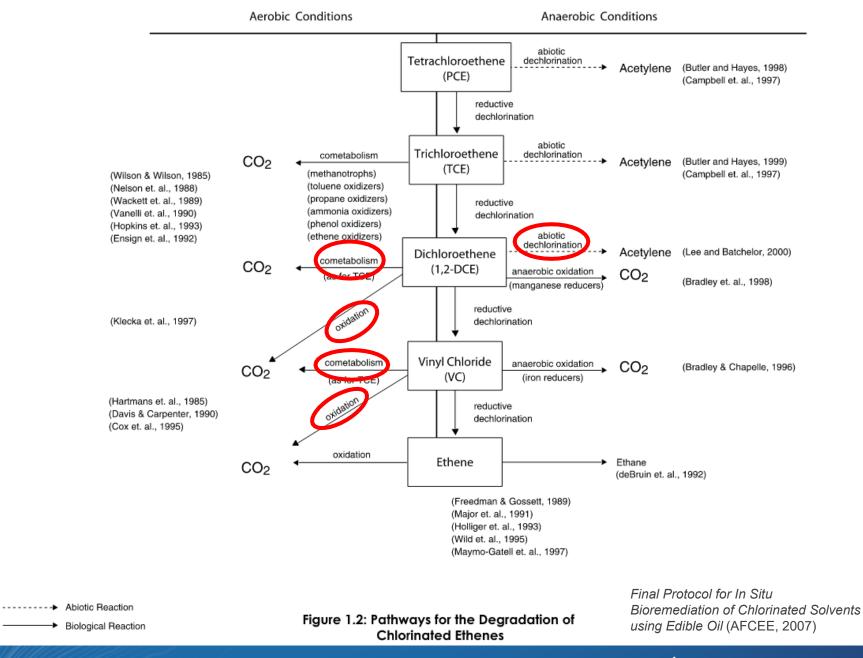
Common & Less Common Pathways

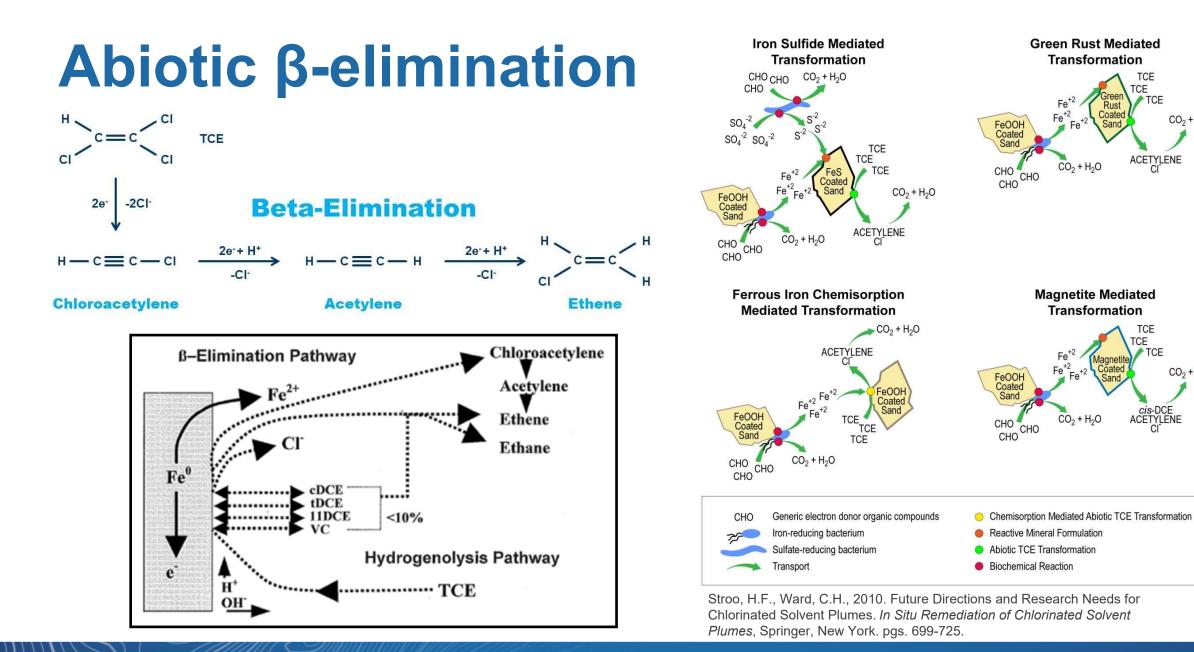


Anaerobic Reductive Dechlorination (Hydrogenolyis)

BURNS MEDONNELL.

Where is the Vinyl Chloride? Active Manufacturing Site – Central Kansas





Alternative Pathways

 Abiotic dichloroelimination (β-elimination)

- Aerobic cometabolism
- Direct oxidation

TCE

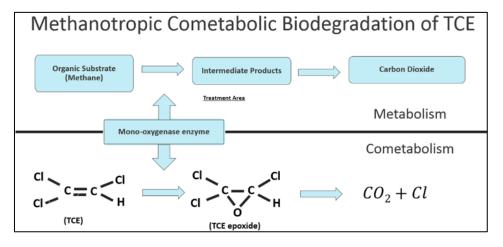
TCE

TCE

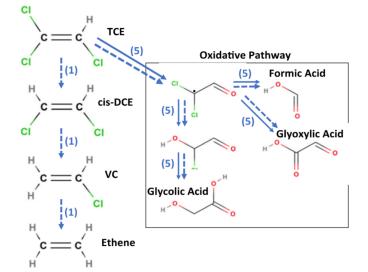
 $CO_{2} + H_{2}O$

TCE

CO₂ + H₂O


Aerobic Cometabolism & Direct Oxidation

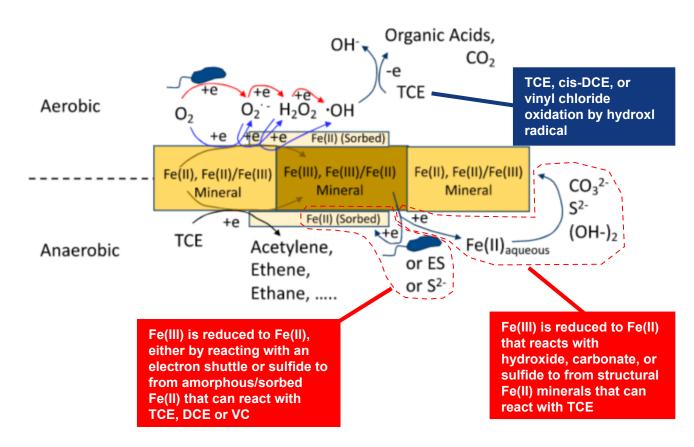
Cometabolism


- COC oxidized by enzyme produced during primary reaction
- Oxygen is the electron acceptor
- Methane, toluene, propane, phenol, etc. are electron donors

Direct Oxidation

 Hydroxyl radicals may be produced when ferrous iron minerals react with oxygen (DO)

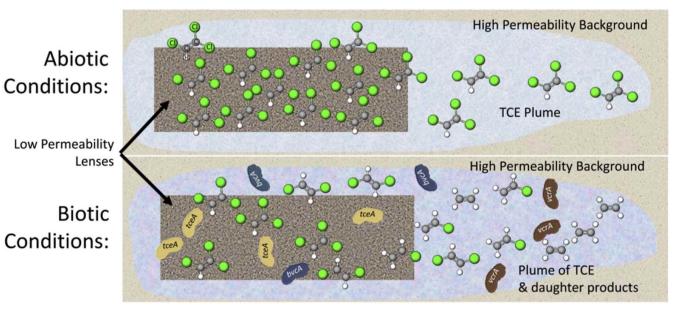
Cometabolic Methanotrophic Enhanced Natural Attenuation at a TCE Superfund Site (T. Cornuet et. al, Battelle Bioremediation Symposium, 2019)



Werth, C., et al. (2020). Final Report – Biogeochemical Processes that Control Natural Attenuation of Trichloroethylene in Low Permeability Zones – SERDP Project ER-2530. SERDP. Alexandria, VA.

Synergistic Mechanisms at Boundaries

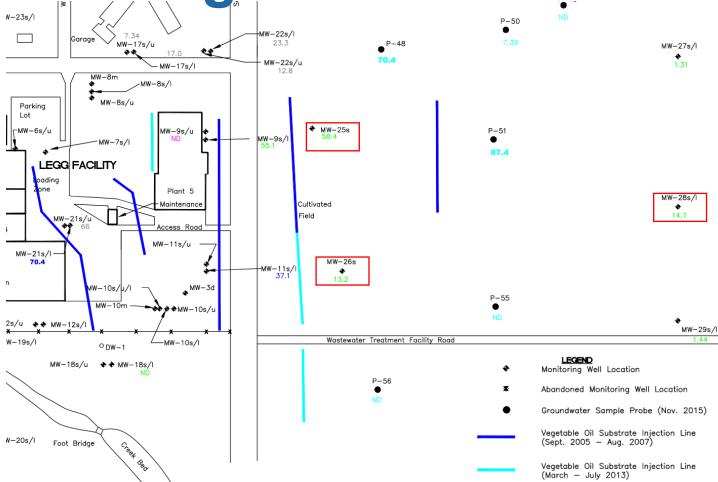
- Potential for multiple, synergistic mechanisms at subsurface boundaries
 - Aerobic / Anaerobic
 - Low / High Permeability



Conceptual model of TCE abiotic reactions under aerobic and anaerobic conditions. Werth, C., et al. (2020). Final Report – Biogeochemical Processes that Control Natural Attenuation of Trichloroethylene in Low Permeability Zones – SERDP Project ER-2530. SERDP. Alexandria, VA.

Importance of the Conceptual Site Model

- Conditions vary with geology, geochemistry & permeability
- Low-k zones within aerobic aquifers often:
 - Harbor high concentrations of VOCs due to matrix diffusion
 - Contain organic carbon and reactive minerals species
 - Can support biotic/abiotic reductive dichlorination
- These zones may be leveraged or created as part of EISB or MNA strategies


Abriola, Capiro, Hnatko, Pennell, Yan, 2020. *Bioenhanced Back Diffusion and Population Dynamics of Dehalococcoides Mccartyi Strains in Heterogeneous Porous Media*, Chemosphere, Volume 254, 2020, 126842, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2020.126842.

Where is the Vinyl Chloride?

Active Manufacturing Site – Central Kansas – Alluvial Aquifer

- Geochemical Results
 - DO: varies with infiltration rates (typ. 2 4 mg/L)
 - ORP: also variable (typ. -50 to +100 mV)
 - Methane: 1,000 5,000 ug/L
 - Mn (dissolved): 500 800 ug/L
 - Fe(II): <100 300 ug/L
 - Sulfate: variable (typ. 20 200 mg/L)
- Potential cDCE degradation pathways
 - Hydrogenolysis May be occurring, with VC not accumulating in detectable quantities?
 - Cometabolism DO and methane are present
 - Abiotic Oxidation DO and reactive Fe minerals may be present
 - β-elimination May be occurring in anaerobic zones?

• MBT results

- Low DHC levels detected in all wells
- VC reductase genes generally not detected
- Other dechlorinators (DHBt, DHG, DSM)
 - Notable detections in MW-25s, indicating diverse microbial community
- Sulfate reducers
 - Significant populations potential for DHC competition and reactive mineral formation
- Methanogens present

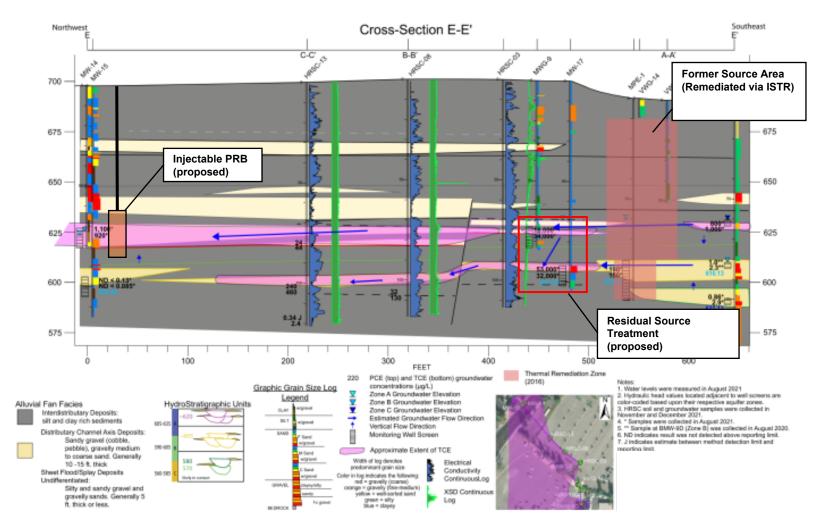
		MW-	25s	MW-	26s	MW-28s/I		
Microorganism / Functional Gene / Enzyme	Relevant Targeted Compounds	cells/mL	Percentile	cells/mL	Percentile	cells/mL	Percentile	
Reductive Dechlorination						•		
Dehalococcoides (DHC)	FCE, TCE, DCE, V.C.	3.30E+01	38%	6.49E+01	44%	1.12E+01	27%	
tceA Reductase (TCE)	TCE	<5.00E-01		<5.00E-01		<5.00E-01		
BAV1 Vinyl Chloride Reductase	FCE, TCE, DCE, V.C.	<5.00E-01		<5.00E-01		<5.00E-01		
Vinyl Chloride Reductase (VCR)	FCE, TCE, DCE, V.C.	<5.00E-01		2.00E-01 (J)	<8%	<5.00E-01		
<i>Dehalobacter</i> spp.(DHBt)	TCE	2.29 E+ 03	67%	<4.70E+00		<4.80 E+ 00		
Dehalogenimonas spp. (DHG)	PCE, TCE, DCE, V.C.	1.68E+03	28%	1.29E+03	26%	<4.80 E+ 00		
Desulfitobacterium spp. (D6B)	TCE	3.12E+02	37%	<4.70E+00		<4.80 E+ 00		
Dehalobium chlorocoercia (DECO)		5.99E+02		6.89E+02		8.29E+02		
Desulfuromonas_spp.(DSM)	TCE	2.50E+00 (J)	<5%	<4.70 E+ 00		6.66E+01	14%	
Aerobic (Co)Metabolic		·						
Soluble Methane Monooxygenase	FCE, TCE, DCE, V.C.	2.50E+00 (J)	<1%	<4.70E+00		3.10E+00 (J)	<1%	
Toluene Dioxygenase (TOD)	FCE, TCE, DCE, V.C.	<4.80E+00		<4.70E+00		<4.80E+00		
Phenol Hydroxylase (PHE)	FCE, TCE, DCE, V.C.	1.50E+02	33%	5.09E+01	21%	1.47E+02	33%	
Toluene Monooxygenase 2 (RDEG)	FCE, TCE, DCE, V.C.	3.14E+02	41%	<4.70E+00		1.19E+02	27%	
Toluene Monooxygenase (RMO)	FCE, TCE, DCE, V.C.	8.00E-01 (J)	<6%	3.10E+00 (J)	<6%	5.09E+02	54%	
Ethene Monooxygenase (EtnC)	VC	9.20E+00	<13%	<4.70E+00		<4.80 E+ 00		
Epoxyalkane Transferase (EnE)	VC	<4.80 E+ 00		3.74E+01	14%	7.07E+01	21%	
Other								
Total Eubacteria (⊞AC)		2.57E+06	75%	1.89E+06	70%	1.67E+06	68%	
Sulfate Reducing Bacteria (APS)		5.28E+04	63%	3.35E+04	59%	3.54E+04	59%	
Methanogens (MGN)		4.83E+02	49%	4.07E+01	24%	<4.80E+00		

- MBT results (continued)
 - Low to ND SMMO levels
 - Notable PHE levels in all wells
 - Phenolic compounds abound in plants
 - Wells located in agricultural fields; may supply phenol to support PHE production.
 - Low to moderate RDEG/RMO levels in MW-25s and MW-28s/l
 - Both wells d/g of historical petroleum release
 - Low levels of EtnC and EtnE suggest some capacity for VC degradation
 - Mod. high total microbial populations (EBAC)

		MW-	25s	MW-	26s	MW-28s/I		
Microorganism / Functional Gene / Enzyme	Relevant Targeted Compounds	cells/mL	Percentile	cells/mL	Percentile	cells/mL	Percentile	
Reductive Dechlorination		•		•				
Dehalococcoides (DHC)	FCE, TCE, DCE, VC	3.30E+01	38%	6.49E+01	44%	1.12E+01	27%	
tceA Reductase (TCE)	TCE	<5.00E-01		<5.00E-01		<5.00E-01		
BAV1 Vinyl Chloride Reductase	FCE, TCE, DCE, VC	<5.00E-01		<5.00E-01		<5.00E-01		
Vinyl Chloride Reductase (VCR)	PCE, TCE, DCE, V.C.	<5.00E-01		2.00E-01 (J)	<8%	<5.00E-01		
<i>Dehalobacter</i> spp. (DHBt)	TCE	2.29E+03	67%	<4.70E+00		<4.80 E+ 00		
<i>Dehalogenimonas</i> spp. (DHG)	FCE, TCE, DCE, V.C.	1.68E+03	28%	1.29E+03	26%	<4.80 E+ 00		
Desulfitobacterium spp. (D6B)	TCE	3.12E+02	37%	<4.70E+00		<4.80 E+ 00		
Dehalobium chlorocoercia (DECO)		5.99E+02		6.89E+02		8.29E+02		
Desulfuromonas_spp.(EGM)	TCE	2.50E+00 (J)	<5%	<4.70E+00		6.66E+01	14%	
Aerobic (Co)Metabolic		÷		• •				
Soluble Methane Monooxygenase	FCE, TCE, DCE, V.C.	2.50E+00 (J)	<1%	<4.70E+00		3.10E+00 (J)	<1%	
Toluene Dioxygenase (TOD)	FCE, TCE, DCE, V.C.	<4.80 E+ 00		<4.70 E+ 00		<4.80 E+ 00		
Phenol Hydroxylase (PHE)	FCE, TCE, DCE, V.C.	1.50E+02	33%	5.09E+01	21%	1.47E+02	33%	
Toluene Monooxygenase 2 (RDEG)	FCE, TCE, DCE, V.C.	3.14E+02	41%	<4.70E+00		1.19E+02	27 %	
Toluene Monooxygenase (RMO)	FCE, TCE, DCE, VC	8.00E-01 (J)	<6%	3.10E+00 (J)	<6%	5.09E+02	54%	
Ethene Monooxygenase (EtnC)	VC	9.20E+00	<13%	<4.70E+00		<4.80 E+ 00		
Epoxyalkane Transferase (EtnE)	VC	<4.80 E+ 00		3.74E+01	14%	7.07E+01	21%	
Other								
Total Eubacteria (⊞AC)		2.57E+06	75%	1.89E+06	70%	1.67E+06	68%	
Sulfate Reducing Bacteria (APS)		5.28E+04	63%	3.35E+04	59%	3.54E+04	59%	
Methanogens (MGN)		4.83E+02	49%	4.07E+01	24%	<4.80 E+ 00		

- Conclusions
 - Diverse community capable of degrading COCs via multiple pathways, albeit at slow rates.
 - cDCE and/or VC likely degrading by other mechanism(s):
 - Cometabolism DO levels supportive at low rates
 - Abiotic Oxidation rate influenced by DO concentration
 - VC "wave" very unlikely

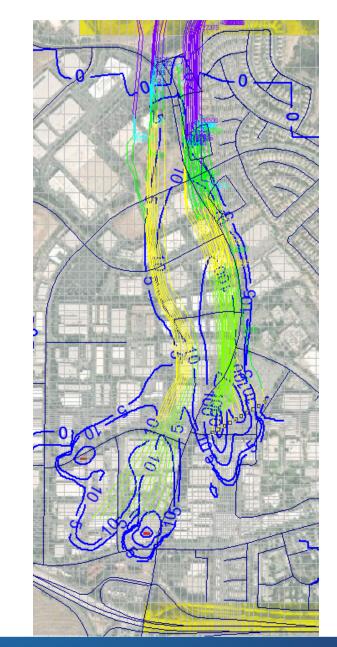
		MW-	25s	MW-26s		MW-28s/I	
Microorganism / Functional Gene / Enzyme	Relevant Targeted Compounds	cells/mL	Percentile	cells/mL	Percentile	cells/mL	Percentile
Reductive Dechlorination							
Dehalococcoides (DHC)	PCE, TCE, DCE, VC	3.30E+01	38%	6.49E+01	44%	1.12E+01	27%
tceA Reductase (TCE)	TCE	<5.00E-01		<5.00E-01		<5.00E-01	
BAV1 Vinyl Chloride Reductase	PCE, TCE, DCE, VC	<5.00E-01		<5.00E-01		<5.00E-01	
Vinyl Chloride Reductase (VCR)	PCE, TCE, DCE, VC	<5.00E-01		2.00E-01 (J)	<8%	<5.00E-01	
Dehalobacter spp. (DHBt)	TCE	2.29E+03	67%	<4.70E+00		<4.80E+00	
Dehalogenimonas spp. (DHG)	PCE, TCE, DCE, VC	1.68E+03	28%	1.29E+03	26%	<4.80E+00	
Desulfitobacterium spp. (DSB)	TCE	3.12E+02	37%	<4.70E+00		<4.80E+00	
Dehalobium.chlorocoercia (DECO)		5.99E+02		6.89E+02		8.29E+02	
Desulfuromonas spp. (DSM)	TCE	2.50E+00 (J)	<5%	<4.70E+00		6.66E+01	14%
Aerobic (Co)Metabolic							
Soluble Methane Monooxygenase	PCE, TCE, DCE, VC	2.50E+00 (J)	<1%	<4.70E+00		3.10E+00 (J)	<1%
Toluene Dioxygenase (TOD)	PCE, TCE, DCE, VC	<4.80E+00		<4.70E+00		<4.80E+00	
Phenol Hydroxylase (PHE)	PCE, TCE, DCE, VC	1.50E+02	33%	5.09E+01	21%	1.47E+02	33%
Toluene Monooxygenase 2 (RDEG)	PCE, TCE, DCE, VC	3.14E+02	41%	<4.70E+00		1.19E+02	27%
Toluene Monooxygenase (RMO)	PCE, TCE, DCE, VC	8.00E-01 (J)	<6%	3.10E+00 (J)	<6%	5.09E+02	54%
🗄 hene Monooxygenase (🖻 nC)	VC	9.20E+00	<13%	<4.70E+00		<4.80E+00	
Epoxyalkane Transferase (BnE)	VC	<4.80E+00		3.74E+01	14%	7.07E+01	21%
Other		· · · · · · · · · · · · · · · · · · ·					
Total Eubacteria (⊞AC)		2.57E+06	75%	1.89E+06	70%	1.67E+06	68%
Sulfate Reducing Bacteria (APS)		5.28E+04	63%	3.35E+04	59%	3.54E+04	59%
Methanogens (MGN)		4.83E+02	49%	4.07E+01	24%	<4.80E+00	

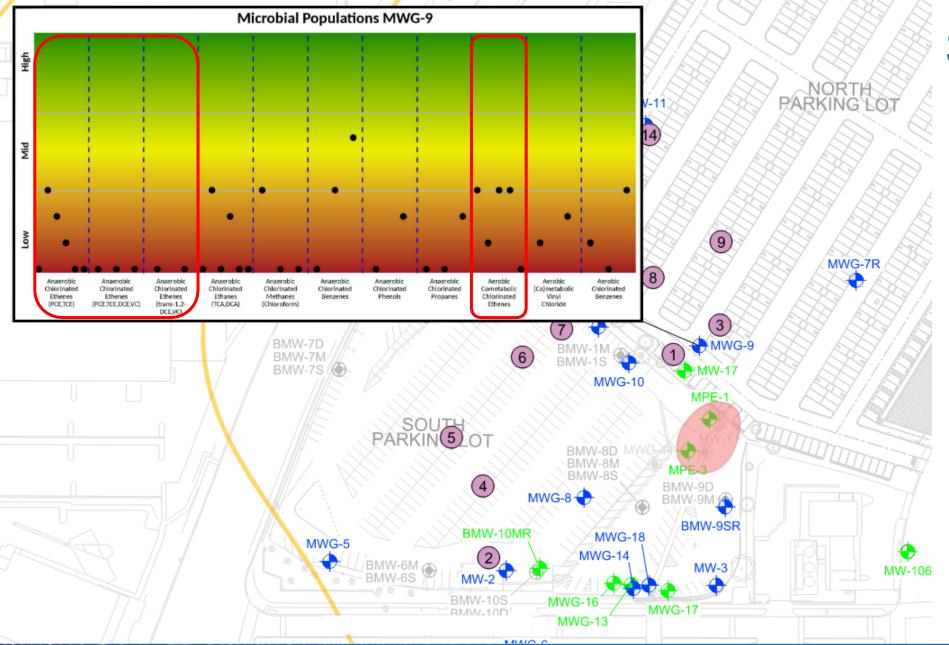

Where is the Vinyl Chloride?

Former Manufacturing Site – Southern California – Fluvial Aquifer

Overview

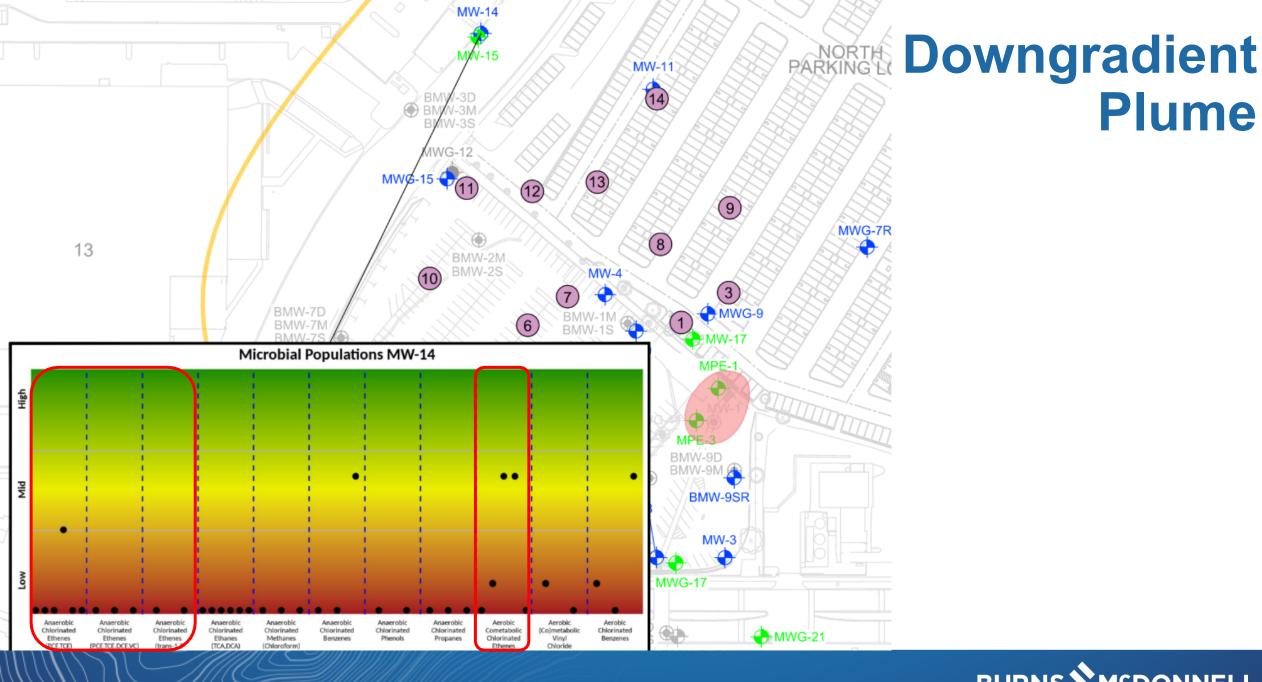
- PCE & TCE concentrations ranging from 10's ppm (source) to 10's ppb (off-site plume)
- Conditions generally aerobic/oxidative
- cis-1,2-DCE and 1,1-DCE detections at some wells
- No vinyl chloride detections in over 20 years of monitoring
- Heterogenous colluvial aquifer
- HSUs comprised of interconnected sand channels within lowpermeability deposits
- In situ remediation technology needed for plume cut-off and source control




Overview

• Potential attenuation pathways:

- 1. Reductive dechlorination (RDC) via hydrogenolysis
 - Historic data not supportive
 - *cis*-1,2-DCE detections at some wells
- 2. Abiotic reductive dechlorination (ARD)
 - Historic data not supportive
- 3. Aerobic cometabolic for TCE degradation (ACD)
 - Historic data somewhat supportive
 - 1,1-DCE detections may be indicative of ACD
 - Adequate DO concentrations

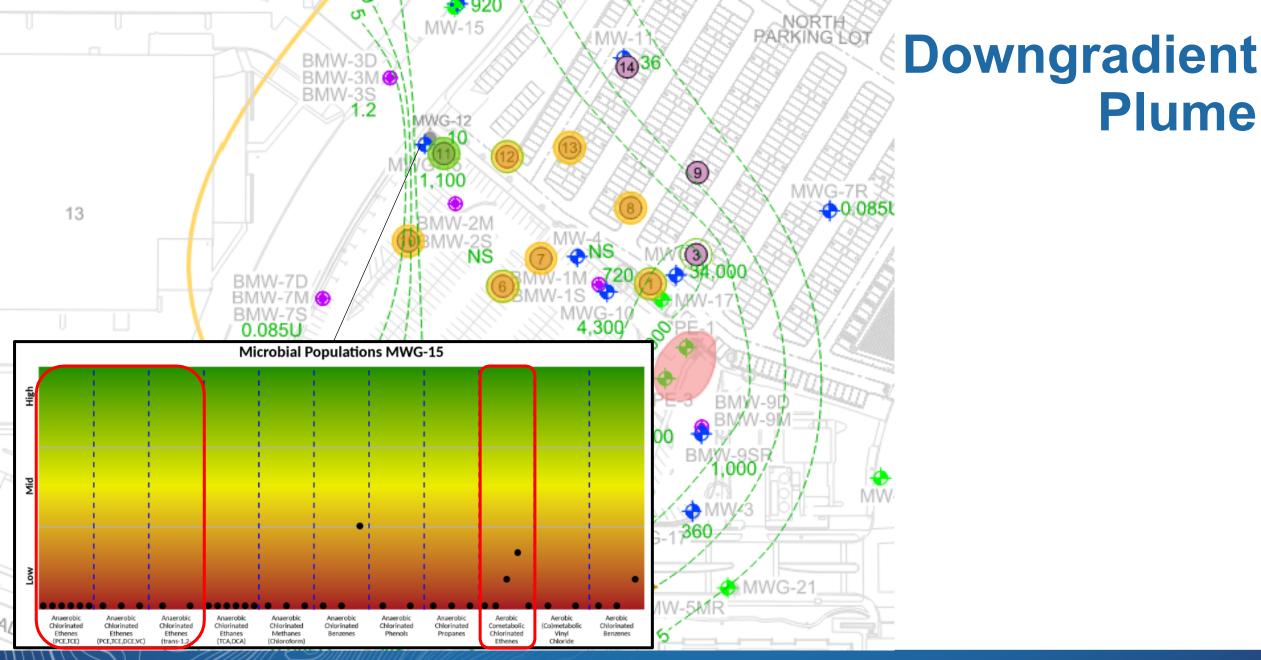


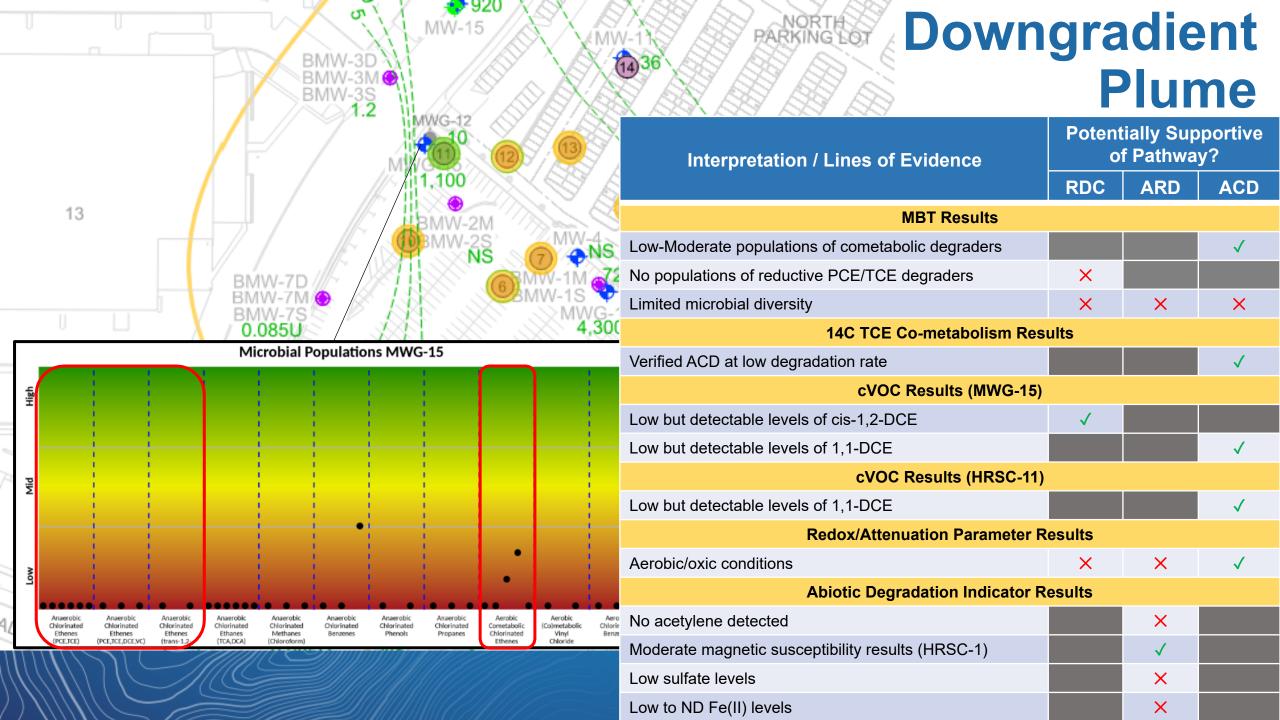
Source Area

B

Ē				NORTH PARKING LOT		2			
ΡΨ	•			Interpretation / Lines of Evidence	Potentially Supportive of Pathway?				
	•				RDC	ARD	ACD		
•	•	•	•	MBT Results					
• For		•	• •	Low-Moderate populations of cometabolic degraders			\checkmark		
Anaerobic Anaerobic Anaerobic A	Anaerobic Anaerobic	Anaerobic Aerobic	Aerobic Aerobic	Low-Mod. populations of reductive PCE/TCE degraders	\checkmark				
Chlorinated Chlorinated Chlorinated Clipping Chlorinated Chl	Malerolite Malerolite Malerolite Chlorinated Chlorinated Methanes Benzenes Phenols Chloroform)	Chlorinated Propanes Chlorinated Ethenes	(Co)metabolic Chlorinated Vinyl Benzenes Chloride	Some microbial diversity	\checkmark	\checkmark	\checkmark		
	Laure Mr IVS		7 💎	14C TCE Co-metabolism Resu	ults				
	BMW-7D BMW-7M BMW-7S	6	BMW-1M BMW-1S	Negative			×		
	DIWIVV-13		MWG	cVOC Results (MWG-9)					
	E Sa			Low but increasing levels of cis-1,2-DCE	\checkmark				
	PARK		BMW-8D	cVOC Results (HRSC-1)					
			BMW-8M BMW-8S	Low but detectable levels of cis-1,2-DCE	\checkmark				
		(4)	MWG-8 🔶	Low but detectable levels of 1,1-DCE			\checkmark		
		BMW-10M	R MWG	Redox/Attenuation Parameter Re	esults				
	MWG-5	2	MWG-14	Mildly aerobic/oxic; more reducing than other wells	\checkmark	\checkmark			
	8 8 BMW-6S	BMW-10S		Abiotic Degradation Indicator Re	esults				
//// Mª		BMW-10D	MWG-16 MWG-13	No acetylene detected		×			
				Moderate magnetic susceptibility results (HRSC-1)		\checkmark			
				Low sulfate levels		×			
				ND Fe(II) levels		×			

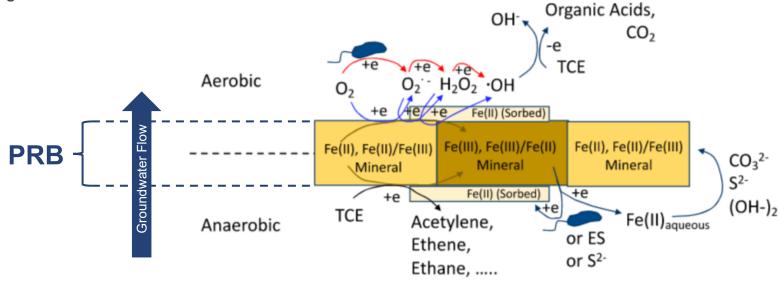
Microbial Populations MWG-9


Plume


	U	MW-14 MV-15 BMV-3D BMV-3M BMV-3M BMV-3S UWG-12 MWC-15 11 12 13						MV MV BMV-3D BMV-3D BMV-3B BMV-3S MWG-12 15	V-14 V-15	2	13	MW-11 PARKING LA Downgradient Plume 9						
	1:	3			BMW-2M BMW-2S		MW-4	Interpretation / Lines of Evidence	Potentially Supportive of Pathway?									
				V/	BMW- BMW-						W-1M		RDC	ARD	ACD			
			1	M	BMW-	-7S	ons MW-	14			W-15 ·	MBT Results Moderate populations of cometabolic degraders						
												Low-Mod. populations of reductive PCE/TCE degraders			V			
High												Limited microbial diversity	×	X	×			
												cVOC Results (MW-14)						
						•			••			Low but detectable levels of cis-1,2-DCE	\checkmark					
Mid												Low but detectable levels of 1,1-DCE			✓			
										-	Redox/Attenuation Parameter Results							
												Aerobic/oxic conditions	X	×	\checkmark			
Low									•	•	•	Abiotic Degradation Indicator Re	sults					
	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Anaerobic Chlorinated	Aerobic Cometabolic	Aerobic (Co)metabolic	Aerobic Chlorinate	No acetylene detected		×				
	Ethenes (PCE,TCE)	Ethenes (PCE.TCE.DCE.VC)	Ethenes (trans-1	Ethanes (TCA,DCA)	Methanes (Chloroform)	Benzenes	Phenols	Propanes	Chlorinated Ethenes	Vinyl Chloride	Benzene	Relatively high magnetic susceptibility results (HRSC-11)		\checkmark				
(($\langle \rangle$			II C							Ľ	Low to moderate sulfate levels		×				

ND Fe(II) levels

X



Evaluation & Path Forward

- **Co-metabolism (ACD)** likely the predominant mechanism for TCE and daughter products, but **reductive dechlorination (RDC)** may contribute in discrete anaerobic zones
- Elevated temperatures may be promoting **RDC** near the former source area
- Minimal evidence of abiotic degradation (ARD)
- Proposed PRB approach
 - Promote biotic/abiotic reductive processes at PRB location
 - Stimulate aerobic biotic/abiotic process downgradient of PRB
 - Treatability testing (e-donor + iron)
 - Modeling

BURNS MEDONNELL.

Conclusions / Lessons Learned

Conclusions / Lessons Learned

- Historical data offer clues re: degradation pathways
- Tools needed to explain lack of VC at sites undergoing reductive dechlorination are now available
- Lack of VC presents potential opportunity to identify alternative pathways that can be leveraged for remediation (including MNA)
- CSM is critical to identifying mechanisms and selection data collection locations

Questions?

