

Constructed Wetlands as a Viable Remedial Alternative Contributing to Improved Site Climate Resilience

6th International Symposium on Bioremediation and Sustainable Environmental Technologies – Austin, Texas

Mattias Verbeeck, BE

May 9, 2023

© Copyright 2023 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

The business of sustainability

Overview

- Background
- Strategy
- Pilot Concept
- Results
- Lessons Learned
- Next Steps

Background

- Manufacturing facility since 1880
- Historical mixed impacts (CVOC, CB, 1,4-D) in soil and groundwater - Different source zones incl. DNAPL
- Initial Remedial Approach approved in 2012:
 - o Risk Removal
 - Mass Reduction (BATNEEC)
- Stepped Implementation:
 - Zone 1: Source excavation + MPE/SVE + ENA
 - Site Border: Hydraulic Containment Barrier + GWTI
 - Planned similar approach for Zone 2 & Zone 3 + P&T as Interim Remedial Measure

Background

E

Background

- Summer 2021 Floods resulted in Regulatory pressure on Comprehensive and Integrated Watercycle Management Systems
- Strong focus on Rainwater Infiltration

Source: Integrated water cycle management practices. (Weber and Ramilo, 2012)

Can we re-think the Remedial Strategy to better fit this new reality?

Strategy

- Evaluation of different nature-based Remedial Technologies as a Sustainable alternative for existing P&T/Barrier/GWTI
- Considering all stakeholders and discussed with local regulators
- Identified 2 Technologies as potential Sustainable alternatives

Aerobic - anaerobic alternation

50 m

• Phytoremediation (next conference?)

Constant feed

Water storage

Water from

remediation

Water from precipitation

Strategy

Constructed Wetlands (CW)

- Treating the impacted groundwater extracted via the Hydraulic Containment Barrier
- Allowing Rainwater Infiltration/Aquifer Recharge
- Immediate local impact on floods and drought effects
- Increased biodiversity
- Limiting Consumables & Energy Use
- Limiting O&M Efforts
- Pilot set-up to test feasibility

Cost Reduction!

www.erm.com

Pilot Concept General Set-up

- CW feasibility test:
 - COC degradation rates of complex mixture
 - Specific design information for a full scale CW
 - o Evaluating the feasibility of incorporating run-off water into a full scale CW
- Mobile open-roof 20 ft container (HMVT, NL)

	00 00	ap ap	89 89		Compartments	3
	parto to	of to to	7000000		Compartment length	2.23 m
	DKAKER	08469467	ADARDE		Compartment width	0.72 m
	JE K K				Compartment height 0.80 m	0.80 m
Barrier	Comp. 1	Comp. 2			Total volume of wetland matrix	Approx. 3600 L
			Comp 2	GWTP	Porosity	0.32
			Comp. 5		Flowrate	10 l/h
GWTP effl.					Retention time Approx.	115 hours

Part

Amount/dimensions

Pilot Concept General Set-up

- Mix of 2 different Wetland Plants
 - Schoenoplectus lacustris & Acorus calamus
- Compartment 1: Aerobic → Anaerobic
 - o 1,4-D & CB
- Compartment 2: Anaerobic
 - PCE, TCE & 1,2 DCE
- Compartment 3: Anaerobic → Aerobic
 - o VC
- Influent composed of water coming from the Barrier, diluted with treated GWTP effluent water
 - Dilution decreasing over time

Pilot Concept Monitoring Plan

- Long-term (1 year) Pilot to mimic seasonal effects
 - Plant growth
 - Flow rates
 - Field measurements (pH, O₂, Eh & EC)
 - Temperature (ambient air + water)
 - Chemical Analysis on COC + Macro-chemicals (Calcium, Magnesium, Ammonium, Nitrate, Sulphate, Phosphate, ...): water + substrate
 - o Gas measurements
 - Microbial screening

Results

Pilot started on November 15, 2022

- Target flow rate = 10 L/hr
- Started with a 4:1 Influent ratio, quickly adapted to 2:1
- Winter conditions forced a System standstill in December 2022
- January 2023 Monitoring results indicating CVOC reduction
 - Volatilization?
 - Sorption Processes?
- No effect yet on 1,4-D
 - Linked with Redox Conditions see next slide
- Increased BOD/COD linked to post start-up matrix flush-out (tree bark + mould) – normalized in latest sampling
- Influent ratio adapted to 1:2 on March 3, 2023

		Inf-C01	Eff-C01	Eff-C02	Eff-C03
PCE	ug/l	510	0,36	0,1	0,1
TCE	ug/l	73	6	2,2	0,1
1,2-DCE	ug/l	400	390	180	35
VC	ug/l	2,8	0,84	0,97	0,35
1,2-DCB	ug/l	120	0,2	0,2	0,2
1,4-D	ug/l	86	120	180	170
Chloride	mg/l	220	240	250	240
BOD5	mg/l	3	37	79	171
COD	mg/l	7,4	103	215	365
Nitrate	mg/l	0,75	0,75	0,75	0,75
Sulfate	mg/l	180	130	92	<5

Sampling date: January 16, 2023

Results *Field Measurements*

- Expected pH decrease confirmed
- No sludge formation observed yet
- Unsuccesfull in bringing Aerobic conditions back at Comp. 3
 - Additional Aeration promoting 1,4-D degradation?

Lessons Learned So far...

- Take sufficient time Plants need to grow and do not like winter...
- Focus Monitoring plan on different processes to understand:
 - Sorption
 - o Dilution
 - Vaporization
 - o Degradation
- Active aeration? Keep in mind your general goal!

Next Steps

- Continuing Pilot test till end October 2023 (1 year, different seasons)
- Stepped increase towards undiluted Influent water
- Continue + Extend Monitoring Plan:
 - Include Microbiological Rhizosphere Assessment
 - Increase understanding of Sorption Processes
 - Increase understanding of Vaporization Processes
- Use Pilot data for full scale design & cost estimate

Balancing pro's and con's with other nature-based Barrier alternative (i.c. Phytoremediation)

Thanks!

Mattias Verbeeck Principal Consultant <u>mattias.verbeeck@erm.com</u> +32 470 20 02 06 Brussels, Belgium

Paulo Valle

Partner paulo.valle@erm.com +32 474 89 04 10 Brussels, Belgium

Olga Vounaki Project Manager olga.vounaki@erm.com +32 478 88 14 14 Brussels, Belgium

Charline Kaplan Consultant <u>charline.kaplan@erm.com</u> +32 471 99 16 03 Brussels, Belgium

