Municipal Activated Sludge-Derived Microplastic Microbiomes: The Good, The Bad, and The Promising

Dung Ngoc Pham, Lerone Clark, Joy Duan, Mengyan Li Department of Chemistry & Environmental Science New Jersey Institute of Technology

> 2023 Bioremediation Symposium Austin, TX May 10th, 2023

Department of Chemistry and Environmental Science

What Are Microplastics?

Microplastics are plastics < 5mm

Primary microplastics - a major source of pollution

5,000~100,000 microbeads released in a single use! The global release: 1.5 Mtons/year (15-30%)

Boucher, J. and Friot D. *et al.*, IUCN. (2017)

Activated Sludge Tanks as "Hot Spots" where Microplastics, Bacteria, and Contaminants Commingle

Adapted from O'neill et al., Rev. Antimicrob. Resist., 2014; Nguyen et al., STOTEN, 2021

3 days of incubation

Biofilm Formation on Microplastics versus Sand

Pham et al., JHM Letters, 2021

Distinct Microbial Communities in Biofilms Attached to Microplastics versus Sand

Pham et al., JHM Letters, 2021

Microplastics Enriched Eight Bacterial Species

Enrichment index defines how many times higher that species presented on PE or PS than on sand.

Metagenome-Assembled Genomes (MAGs)

A Raoultella Genome Carries 26 ARGs and Neighboring **Genes to Mobilize Them**

Antibiotic	ARG subtype	Number	
Aminoglycoside	kdpE, aad2	2	aad2
Aminocoumarin	mdtC, mdtG	2	merC IS110 sul1 XerC PinR I
Beta-lactam	OmpA, blaPLA OKP-B-7	3	5000 ¹ 10,000 ¹ 15,000 ¹ 20,000 ¹
Fluoroquinolone	mdtK	1	
Fosfomycin	FosA6, mdtH	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Peptide	bacA , yojl	2	merA IS6 XerD
Phenicol	cmIA	1	quezacitar
Sulfonamide	sul1	1	Metal resistance gene 📃 ARG
Multidrug	acrA, acrB, acrF, baeR, KpnE, KpnF, LptD, marA, qacEdelta1, ramA, rsmA, tolC	12	Transposase 📃 Recombinase 🔲 Other genes an example of a resistance island

Pham *et al.*, in preparation

IS4

Tn3

Microplastics Significantly Enriched ARGs

Two-way Student's t-test, *p < 0.05 and **p < 0.01.

Pham et al., JHM Letters, 2021

Microplastics Significantly Enriched ARGs

Two-way Student's t-test, *p < 0.05 and **p < 0.01.

Pham et al., JHM Letters, 2021

All Novosphingobium Genomes Contain Putative Laccase Genes with Plastic Biodeterioration

Microbial biomass, H₂O, CO₂

Pham *et al.*, in preparation

Take Home Message:Microplastics are hubs of bacteria with antibioticresistance and plastic biodeterioration potentials

Pham et al., JHM Letters, 2021; Zhang, Tech. Networks, 2021

Welcome to our posters!

Title	Poster Board	Time
Reed Straw-Derived Biochar (RESCA) for Effective Adsorption Removal of Per- and Polyfluoroalkyl Substances (PFAS)	#25	Wednesday 5:45 pm
Shifting of Target and Non-Target Per- and Polyfluorinated Alkyl Substances (PFAS) over Municipal Wastewater Treatment	#39	Wednesday 5:45 pm
A Novel Biodefluorination Pathway of Fluorotelomer Carboxylic Acids (FTCAs) by Municipal Activated Sludge	#43	Wednesday 5:45 pm
Discovery of Gram-Negative <mark>Sulfonamide</mark> Degraders from Municipal Activated Sludge	#42	Wednesday 5:45 pm
Novel Group-6 Propane Monooxygenases in Charge of 1,4- Dioxane Biodegradation in Psychrophilic Propanotrophic Consortia	\$46	Wednesday 5:45 pm
Dual-Culture System Enables the Degradation of 1,4-Dioxane and Co-occurring Chlorinated Aliphatic Hydrocarbons	#45	Wednesday 5:45 pm
Propane and 1-Propanol as Auxiliary Substrate Alternatives for Effective Cometabolic Bioremediation of 1,4-Dioxane	#50	Wednesday 5:45 pm

Special Issue on "Pollution and Remediation in Soil-Groundwater Environment"

Journal of Hazardous Materials Advances

Publishing options: OA Open Access 7

ISSN: 2772-4166

Acknowledgements

Previous members:

- Dr. Fei Li
- Dr. Na Liu
- Dr. Daiyong Deng
- Dr. Qiong Wu
- Dr. Guifen Lyu

We are recruiting PhD students and Postdocs!

Mengyan "lan" Li mengyan.li@njit.edu

- Pham, D. N.[#] and *M. Li**. (Jun 4, 2023) Multidrug Resistant Chryseobacteria and Their Health Implications. <u>WATERMICRO23 21st Symposium on Health-</u> <u>related Water Microbiology</u>. Darwin, Australia. (*Talk*)
- Pham, D. N.[#] and *M. Li**. (Jun 4, 2023) Microplastics as Hubs Enriching Antibiotic-Resistant Bacteria and Pathogens in Municipal Activated Sludge. <u>WATERMICRO23 21st Symposium on Health-related Water Microbiology</u>. Darwin, Australia. (*Poster*)
- S. Zhang, D. N. Pham[#], C. Li[#], L. Axe, and *M. Li**. (May 29, 2023) Effective Removal of Water Contaminants Of Emerging Concern By Biologically Active Filters. <u>IWA LET2023 Conference</u>. Daegu, South Korea. (*Talk*)
- D. Deng[#] and *M. Li**. (May 29, 2023) Effective Treatment of 1,4-Dioxane in Wastewater via The Bioaugmentation of *Azoarcus* sp. DD4. <u>IWA LET2023</u> <u>Conference</u>. Daegu, South Korea. (*Poster*)

Plastic Poll Plicentica FGlobtable Sau Global Issue

Global plastic production: 348 Mtons/year

Plastic waste entering the ocean: 4.8 to 12.7 Mtons/year

Boucher, J. and Friot D. et al., IUCN. (2017)

Differential Ranking Revealed Taxa Specific to Microplastics

Objective – Plastisphere Microbiomes

To investigate the antibiotic-resistant bacteria (ARB) and associated genes in activated sludge-derived biofilms on microplastics in municipal wastewater treatment facilities.

Rummel et al., ES&T, 2017

Eight Bacterial Taxa Enriched on Microplastics

Pham et al., JHM Letters, 2021; Pham et al., in preparation

Activated Sludge Units as Hotspots Converging Microplastics and Antibiotic Resistance

Murphy *et al*., ES&T (2016) Rummel *et al*., ES&T (2017)

Objectives

Primary effluent

- 1. Whether microplastics can significantly enrich ARGs and ARB
- PE and PS vs sand as negative control
- Antibiotic: SMX

2. Which species are associated with microplastics and their role in biofilm communities

Activated sludge units

Rivers

Significances Advance our ι and pathogen

Anderson et al., Mar. Pollut. Bull. (2016)

Maximum detection in wastewater treatment plants

nicroplas<mark>tios የመፈከሄ አውጥ (በ ፍክክ a គឺ fibiotic</mark> resistances stems and **dow nate ea (ም ፍ**) nviron የክጅክts

Sun et al., Water Research (2019)

Microplastics Promoted Biofilm Formation

1. A higher abundance of *N. pokkalii* & *Flectobacillus sp.* on microplastics than on sand

2. A higher hydrophobicity of microplastics than sand

Two-way Mann–Whitney U-test (**, p < 0.01).

Significant Correlation between Sul1 and Intl1

Bhardwaj et al., (2015)

Research History on Microplastic Biofilms

Enrichment
$$index_{taxon_i} = \frac{N_{taxon_i}/N_{H.Huttiense}}{D_{taxon_i}/D_{H.Huttiense}}$$

 N_{taxoni} and D_{taxoni} are average relative abundances of taxon_i in PE or PS and sand biofilms, respectively.

 $N_{H. huttiense}$ and $D_{H. huttiense}$ are average relative abundances of *H. huttiense* in PE or PS and sand biofilms, respectively.

Figure 1. Molecular structure of polystyrene, polyethylene, and sulfamethoxazole

qPCR: Microplastics Significantly Enriched ARGs

Figure 1. Absolute abundance of ARGs in microparticle biofilms cultivated in different activated sludge samples with or without the presence of SMX. Two-way Student's t-test, *p < 0.05 and **p < 0.01.