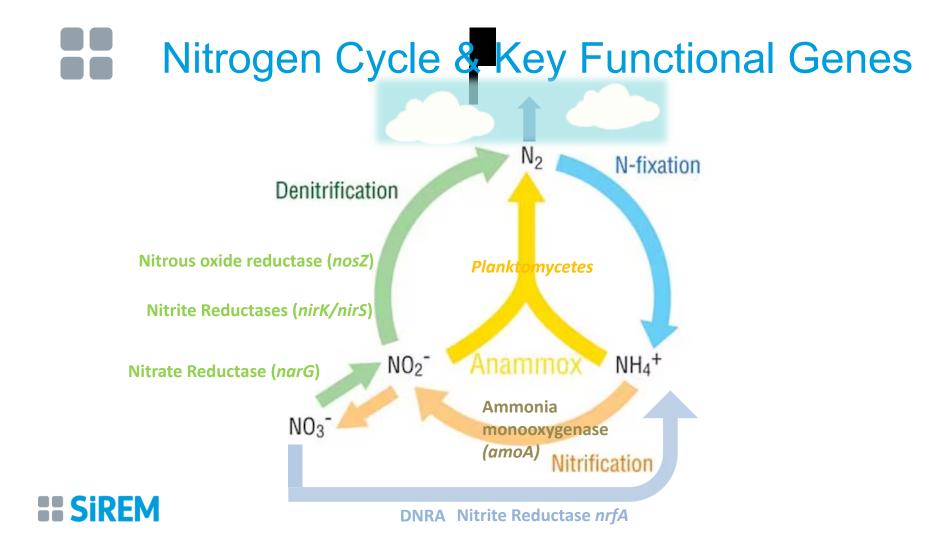


siremlab.com

Nitrogen Compound Metabolism Insights Gained by a Holistic Testing Regime


Presented by: Phil Dennis

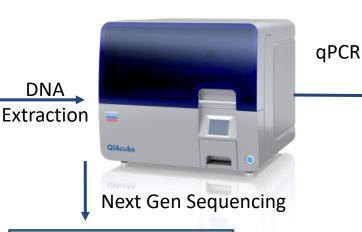
Phil Dennis, Jeff Roberts, Savannah Volkoff and Eric Nesbit

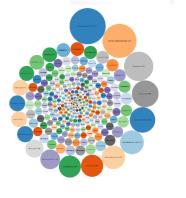
Battelle Bioremediation and Sustainable Environmental Technologies 10-May-23 Nitrogen Compounds are a Major Problem
Toxic to humans and regulated in drinking water
Cause eutrophication of natural waters
Nitrous oxide is a potent greenhouse gas
Have complex biotransformation pathways

Understanding Nitrogen Metabolism

- What form are nitrogen compounds in?
- Do you have suitable geochemistry to transform?
- Are sufficient nutrients available (electron donors)?
- Are nitrogen metabolizing microbes present?
- What are the likely end products N_2 ? NH_4 ? NO_3 ? N_2O ?
- Are concentrations declining over time?

A combination of analytical, molecular biological and isotopic tests can answer the above questions




Molecular Biological Tools (MBTs)

Samples

SiREM

Microbial Community Profiles

Leading Science - Lasting Solutions

Certificate of Analysis: Gene-Trac[®] NitroGen™ Ammonia Monooxygenase A Assay

Customer: Savannah Volkoff, Geosyntec Consultants

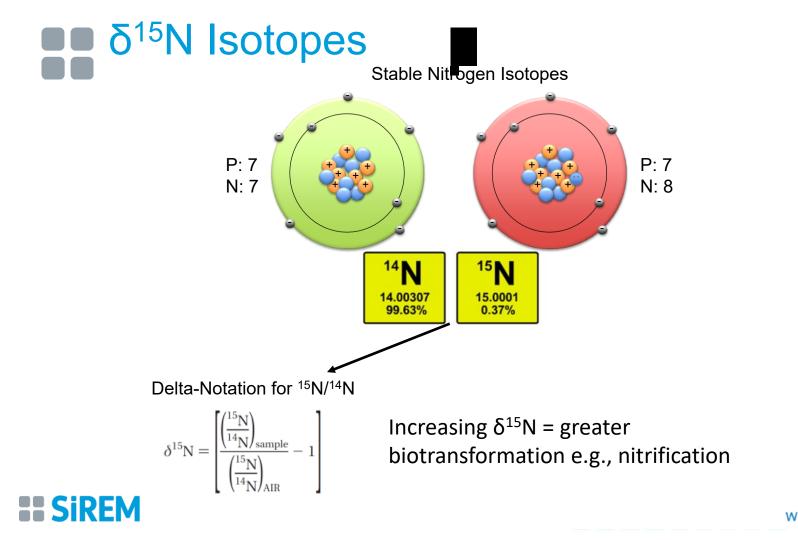
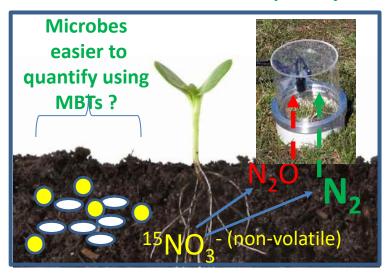

SiREM Reference: S-8258 Report Date: 4-Oct-21 Data Files: QS3A-amoA-QPCR-0102

Table 1d: Test Results

Sample ID	Ammonia Monooxygenase A amoA (archaeal)		Ammonia Monooxygenase A amoA (bacterial)		
	Percent (2)	Gene Copies/Liter	Percent ⁽²⁾	Gene Copies/Liter	
MW-2-20210803	0.01 - 0.03 %	3 x 10 ⁵	NA	1 x 10 ⁴ U	
MW-1-20210803	0.006 - 0.02 %	5 x 10 ⁴	NA	1 x 10 ⁴ U	
INJ1-20210803	0.002 - 0.007 %	1 x 10 ⁵	NA	1 x 10 ⁴ U	

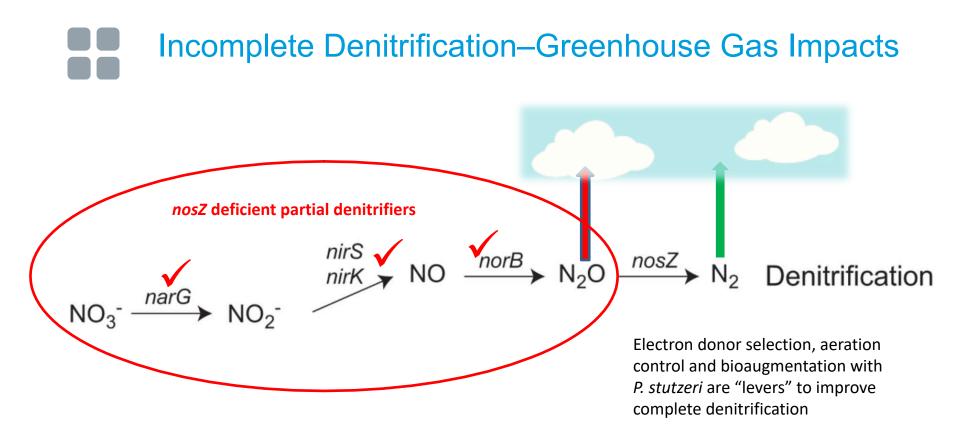
See final page for notes.

Quantify Specific Gene targets



Advantages of MBTs & Isotopes to Assess N-Transformation

Determining soil and water N-flux is challenging


- o Flux events highly variable
- \circ End products (N₂O/N₂) gaseous and ubiquitous (N₂)
- Advantages of Isotopic methods
- \circ Integrate long term transformation via enriched $\delta^{15}N$ ^{18}O
- \circ $\delta^{15}N$ ¹⁸O quantified in non-volatile NO₃ and NH₃
- Advantages of MBTs
- Microbes are non-volatile, don't dissipate like gases
- MBTs are very sensitive
- MBTs detect potential functions, even if not active
- Tracking populations over time is informative

SiREM

Gas flux difficult to quantify

In denitrification want full gene set, particularly nosZ, to prevent N₂O emissions

SiREM

Former Fertilizer Plant (Wilmington, NC)

- Fertilizer plant 1930s-1982
- Fertilizer & petroleum contamination of Groundwater (GW)
- 2018 GW ammonium ~ 83 mg/L NC NH₄⁺ GW standard 1.5 mg/L
- 2021 ammonium Results:
 - Max 31 mg/L
 - \circ Min 9 mg/L

SiREM

No active remediation MNA

Key Question is Ammonium Being Transformed or Transported?

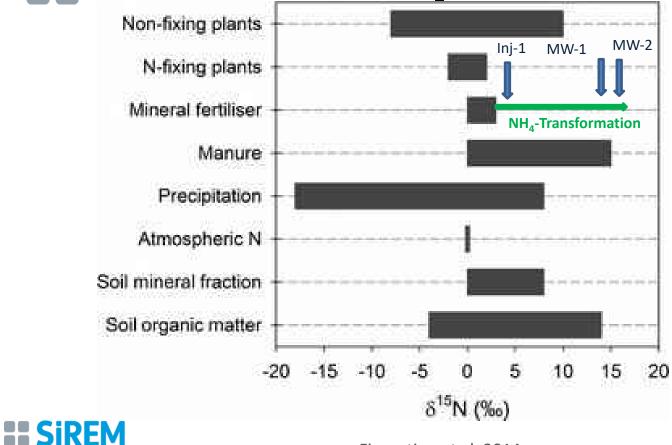
Data Summary NC Site

SiREM

ANALYTICAL SUITE Results Sui	mmary					
Parameter Sample						
Analytical	MW-2-20210803	MW-1-20210803	INJ1-20210803			
Nitrate mg/L	< 0.09	<0.09	<0.09			
Nitrite mg/L	14	9.7	9.7		Forms of N	
Ammonia mg/L	24	30.2	10.4	Г		
Total Kjeldahl Nitrogen (TKN)	22.4	27.2	9.85			
Sum N-Compounds mg/L	38	39.9	20.1			
Phosphate	7.5	1.9	ND			
Sulfate	1.8	ND	ND			
Isotopes						
δ ¹⁵ N Ammonia	15.33	13.905	3.81			
$δ^{15}$ N $δ^{18}$ O Nitrate	ND	ND	ND		Isotopes	
qPCR					I	
Anammox						
Anammox Bacteria	1.00E+04	1.E+06	2.00E+03	ר		
Denitrification						
narG	1.E+08	3.E+07	8.E+07			
nirS	2.E+08	4.E+06	2.E+07		Microbes	
Nitrification					IVIICIODES	
amoA (Archaea)	3.00E+05	5.00E+04	1.00E+05			
amoA (Bacterial)	ND	ND	ND			
Nitrobacter	2.00E+04	1.00E+04	3.00E+04			
Electron Donors				5		
TOC mg/L	27.5	18.4	17.6		Electron Donors	
Total VFA mg/L	91.8	83.75	79.62	J	LIECTION DONOIS	
Field Parameters						
ORP mV	-125	-26.1	-126.4			
DO mg/L	0.05	0.52	0.1	L	Field Parameters	
pH	6.41	6.25	6.69	Г	FIEIG Parameters	
Groundwater Temperature °C	21.5	24.8	24.4			
Summary						
·						
Comments	Denitrification predominant/ ammonium most biodegraded in this sample	Mixture of denitrification and anammox at this location /ammonium degradation intermediate in this location and may be driven by anammox	Denitrification predominant/least evidence of ammonium degradation in this sample		NitroGen ^{**}	

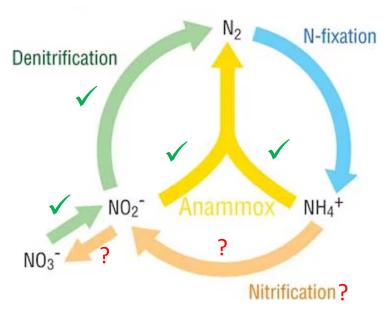
NC Site Nitrogen Pathways Molecular Biological Tools Summary

MBTs Indicated


- 3 potential modes of N-metabolism
- Denitrification gene copies highest
- Anammox highest at MW-1
- Nitrification highest at MW-2

1E+00 M\\Anammox ■ Denithication ■ Nitrification

$\bullet \delta^{15} N \text{ Isotopes NC Site}$

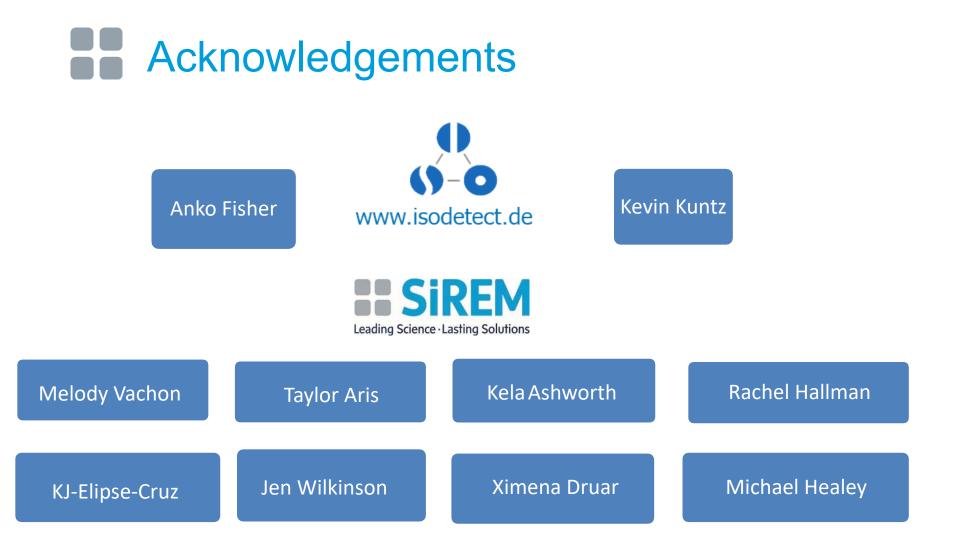


Isotopes Indicate Ammonium transformation highest in downgradient monitoring wells

Fiorentino et al, 2014

Conclusions Former Fertilizer Plant NC

Ammonium declining 2018-2021. Dilution? Biotransformation? What pathways?


- Strong isotopic evidence for NH₄ transformation in downgradient MW wells
- Three potential N-metabolism pathways
- Denitrification using VFAs as electron donors -likely
- Anammox Co-transformation ammonium and nitrite-likely
- **Nitrification** potential source of nitrate/nitrite site -redox not supportive?

Conclusions

- Nitrogen compounds are widespread and have significant human heath and environmental impacts.
- Holistic approach to N-compound analytical including MBTs and isotopes leads to a better understanding of whether N-transformation is occurring and how.
- Better knowledge can lead to increased ability to manage and optimize N-compound remediation outcomes.

Questions? Comments! P siremlab.com

Phil Dennis Principal Scientist pdennis@siremlab.com 519-515-0836