
Non-Viral Gene Delivery (NVGD) Using Polymeric Nano-Particles

Any Payload, Anywhere, Anytime

Battelle's NVGD platform helps solve the most substantial hurdle to gene editing therapies: delivery. It uses nanoparticles capable of loading at least ten times the five kilobase limit of virus vectors.¹ By combining a robust yet versatile synthesis platform with in vivo tracking and machine learning directed design, it addresses the payload challenge, unlocking high-throughput parallel in vitro and in vivo screening of thousands of nanoparticles.^{2,3}

15 PhDs, spanning the fields of chemical engineering, materials science, polymer chemistry, molecular genetics, cell biology, toxicology, immunology, and data science

4 patents covering polymer nanoparticles and other non-viral delivery compositions, and DNA barcoding for polymer nanoparticles

KEY PARAMETERS	RATIONALE
Payload Capacity	Greater than 15kB loading capacity ⁵
Payload Diversity	Nucleic acids and combinations of proteins & nucleic acids ⁶
Targetability	Potential to differentially target various tissues ³
Immunogenicity	Repeat application possible
Manufacturability	High throughput chemical synthesis; fast and predictable

References

¹Sims et. al. (2021) Cationic Diblock Copolymer Nanoparticles Improve Intercellular Delivery of Large pDNA Payloads. [Poster Presentation]. 2021 ASGCT.

²Duong et. al. High-throughput screening of polymer nanoparticles as non-viral delivery vehicles for genetic payloads. [Poster Presentation]. 2022 Controlled Release Society.

³Sims et. al. Advancing Non-Viral Delivery Vehicle Discovery via Battelle's HIT SCAN Platform. [Poster Presentation]. 2023 SFB.

4Sims et. al. Advancing NF-1 Schwann Cell Targeted Therapy via Gene Regulatory Protein Development and Non-Viral Delivery Vehicle Discovery. [Poster Presentation]. 2023 ASGCT.

⁵Gupta et. al. Cationic Diblock Polymeric Nanoparticles Encapsulate and Delivery a Full-length 20kb cDNA to Neuronal Cells. [Poster Presentation]. 2023 ASGCT.

⁶Sims et. al. Cationic Diblock Copolymer Nanoparticles Improve Intercellular Delivery of Large pDNA Payloads. [Poster Presentation]. 2021 ASGCT.

800.201.2011 | solutions@battelle.org | www.battelle.org

Battelle and its logos are registered trademarks of Battelle Memorial Institute. © Battelle Memorial Institute 2023. All Rights Reserved. ID 787 06/23